Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Hàm số nào sau đây đồng biến trên R? A y = x4 + 3x2 + 2 B[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Hàm số sau đồng biến R? A y = x√4 + 3x2 + √ C y = x2 + x + − x2 − x + B y = tan x D y = x2 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + ty = + 2tz = C x = + 2ty = + tz = D x = + 2ty = + tz = − 4t Câu Hàm số sau khơng có cực trị? A y = x4 + 3x2 + C y = x2 B y = cos x D y = x3 − 6x2 + 12x − Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B m ≥ C −1 < m < D m ∈ (0; 2) −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = √3 −u | = A |→ B |→ C |→ D |→ √ ′ ′ ′ ′ Câu Cho lăng trụ ABC.A B C có đáy a, AA = 3a Thể tích khối √ lăng trụ cho là: √ 3 A 3a B a C 3a D 3a3 Câu Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln 6a2 C ln a B ln 23 i R2 R2h Câu Nếu f (x)dx = 12 f (x) − dx A B C D ln 23 D −2 Câu Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường trịn Tâm đường trịn có tọa độ A (−2; 0) B (0; −2) C (0; 2) D (2; 0) Câu 10 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn B 359 C 71 D 354 A 18 35 Câu 11 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n3 = (1; 1; 1) B → n4 = (1; 1; −1) C → n1 = (−1; 1; 1) D → n2 = (1; −1; 1) Câu 12 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 2) B (1; 0) C (0; 1) D (−1; 2) Câu 13 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 7π 512π 22π A V = B V = C V = D V = 15 Trang 1/5 Mã đề 001 ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (0 ; −2) B (0 ; 3) C (3; ) D (2 ; 0) y−6 z+2 x−2 = = Câu 15 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ C 10 A √ B √ D √ 10 53 Câu 14 Cho hàm số y = Câu 16 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D x−2 y x−1 Câu 17 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B ( ; − ; ) C (2 ; −3 ; 1) D ( ; − ; ) 3 3 3 3 Câu 18 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + 2ty = 2tz = + t B x = + ty = tz = + t C x = + ty = tz = − t D x = − ty = tz = + t √ Câu 19 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 10 B |z| = 50 C |z| = D |z| = 33 Câu 20 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A B √ C √ D √ 13 Câu 21 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 15 15 A S = B S = C S = D S = 1+i z 25 Câu 22 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu số ảo mệnh đề sau đúng? A Tam giác OAB tam giác nhọn C Tam giác OAB tam giác vuông z w B Tam giác OAB tam giác cân D Tam giác OAB tam giác Câu 23 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A 25π B C D 5π Câu 24 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 trên√mặt phẳng phức Khi đó√ độ dài MN B MN = C MN = D MN = A MN = Câu 25 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A π B 4π C 2π D 3π Trang 2/5 Mã đề 001 −2 − 3i Câu 26 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 27 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = 1+i z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 25 15 15 A S = B S = C S = D S = 4 √ Câu 28 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = B |z| = 50 C |z| = 10 D |z| = 33 z − z =2? Câu 29 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một Parabol B Một đường tròn C Một đường thẳng D Một Elip Câu 30 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = D P = B P = C P = 2 Câu 31 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 5)2 + (y − 4)2 = 125 B (x + 1)2 + (y − 2)2 = 125 C x = D (x − 1)2 + (y − 4)2 = 125 √ Câu 32 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = − −a = (1; 3; 4), tìm vectơ → −a Câu 33 Cho vectơ → b phương với vectơ → → − → − → − → − A b = (2; −6; −8) B b = (−2; −6; 8) C b = (−2; 6; 8) D b = (−2; −6; −8) Câu 34 Trong không gian với hệ trục tọa độ Oxyz, cho A(0; −1; 1), B(−2; 1; −1), C(−1; 3; 2) Biết ABCD hình bình hành, tạo độ điểm D A D(1; 1; 4) B D(−1; 1; ) C D(1; 3; 4) D D(−1; −3; −2) Câu 35 Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ ⃗a = (2; 1; 1),⃗b = (m; 2n − 4; 2) phương Khi giá trị m, n A m = 4, n = B m = 4, n = −3 C m = −4, n = D m = −4, n = −3 Câu 36 Trong không gian Oxyz, cho điểm M nằm mặt phẳng (Oxy)sao cho M không trùng với gốc tọa độ không nằm hai trục Ox, Oy, tọa độ điểm M (a, b, c , 0) A (a; 1; 1) B (0; b; a) C (0; 0; c) D (a; b; 0) Câu 37 Trong không gian Oxyz, cho điểm M nằm trục Oxsao cho M không trùng với gốc tọa độ, tọa độ điểm Mcó dạng A M(a; 0; 0), a , B M(0; 0; c), c , C M(a; 1; 1), a , D M(0; b; 0), b , − −a = (1; 2; 0) → Câu 38 Gọi φ góc hai vectơ → b = (2; 0; −1), cos φ 2 A B √ C − D 5 Câu 39 Cho tứ diện OABC có cạnh OA, OB, OC đơi vng góc OA = OB = OC = Tính thể tích V khối tứ diện OABC 1 A V = B V = C V = D V = Trang 3/5 Mã đề 001 Câu 40 Khối đa diện khối đa diện sau có tính chất: “Mỗi mặt khối đa diện tam giác đỉnh đỉnh chung ba mặt ”? A Khối bát diện B Khối lập phương C Khối mười hai mặt D Khối tứ diện Câu 41 Đồ thị hàm số y = −x3 + 3x2 − 3x + có điểm cực trị? A B C D Câu 42 Cho hàm số y = f (x) có bảng biến thiên sau: x −∞ y′ +∞ −2 − − +∞ −2 y −2 −∞ Đồ thị hàm số y = f (x) có đường tiệm cận đứng tiệm cận ngang? A B C D Câu 43 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A (0; 3) B (1; 2) C x = D x = Câu 44 Tìm giá trị nhỏ hàm số f (x) = 2x3 − 3x2 − 12x + 10 đoạn [−3; 3] A −10 B 17 C −35 D Câu 45 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 450 C 360 D 600 đúng? x B Hàm số đồng biến R D Hàm số nghịch biến R Câu 46 Kết luận sau tính đơn điệu hàm số y = A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến (0; +∞) Câu 47 Tính I = R1 √3 7x + 1dx 45 A I = 28 B I = 60 28 C I = 20 D I = 21 Câu 48 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = x3 − 2x2 + 3x + x−1 C y = sin x D y = tan x Câu 49 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường elip B Đường tròn C Đường hypebol D Đường parabol Câu 50 Cho hai số thực a, bthỏa mãn a > b > Kết luận sau sai? √ √ √ √ √5 √ A a < b B a > b C ea > eb D a− < b− Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001