Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m > C m ≤ D m < −u (2; −2; 1), kết luận sau đúng? Câu Trong hệ tọa độ Oxyz cho → √ không gian với→ → − − −u | = −u | = A | u | = B | u | = C |→ D |→ p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux > thìy < −15 C Nếu < x < y < −3 D Nếux = y = −3 Câu Tính I = R1 √3 7x + 1dx A I = 60 28 B I = 20 C I = 21 D I = 45 28 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = −x4 + 3x2 − C y = x3 − 2x2 + 3x + D y = x2 − 2x + Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = 13 C m = D m = −15 Câu Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = πxπ−1 C y′ = π1 xπ−1 D y′ = πxπ Câu Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A 12 B 11 C D Câu Có cặp số nguyên (x; y) thỏa mãn log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ? A 49 B 48 C 90 D 89 Câu 10 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (6; 7) B (7; −6) C (−6; 7) D (7; 6) Câu 11 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx C 23 D A B 43 Câu 12 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Trang 1/5 Mã đề 001 Câu 13 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (1; 4) B Hàm số cho đồng biến khoảng (−∞; 3) C Hàm số cho nghịch biến khoảng (3; +∞) D Hàm số cho nghịch biến khoảng (1; 4) Câu 14 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −4 B −8 C −2 D −6 Câu 15 Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A B 2022 C D Câu 16 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A N(1 ; ; 7) B Q(4 ; ; 2) C M(0 ; ; 2) D P(4 ; −1 ; 3) Câu 17 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) tiếp xúc mặt cầu (S ) B (P) không cắt mặt cầu (S ) C (P) cắt mặt cầu (S ) D (P) qua tâm mặt cầu (S ) Câu 18 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 512π 22π 7π B V = C V = D V = A V = 15 Câu 19 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ B √ C √ D 13 √ Câu 20 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 10 B |z| = 50 C |z| = 33 D |z| = Câu 21 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường tròn Tính bán kính r đường trịn A r = B r = 20 C r = D r = 22 z Câu 22 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác B Tam giác OAB tam giác nhọn C Tam giác OAB tam giác cân D Tam giác OAB tam giác vng √ Câu 23 (Tốn Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 3 A |z| < B < |z| < C |z| > D ≤ |z| ≤ 2 2 Câu 24 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A π B 4π C 3π D 2π √ Câu 25 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Trang 2/5 Mã đề 001 Câu 26 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Hai đường thẳng B Một đường thẳng C Parabol D Đường tròn Câu 27 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w √= x + iy mặt phẳng phức √ Để tam giác MNP √ số phức k A w = + 27 hoặcw = − 27 B w = 27 − i hoặcw = 27 +√i √ √ √ D w = + 27i hoặcw = − 27i C w = − 27 − i hoặcw = − 27 + i z+i+1 số ảo? Câu 28 Tìm tập hợp điểm M biểu diễn số phức z cho w = z + z + 2i A Một đường thẳng B Một đường tròn C Một Elip D Một Parabol −2 − 3i Câu 29 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = 1+i Câu 30 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 15 25 25 A S = B S = C S = D S = 4 Câu 31 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 4π B 3π C π D 2π Câu 32 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 √ √ mặt phẳng phức Khi độ dài MN B MN = C MN = D MN = A MN = − → − → − → −−→ Câu 33 Trong không gian Oxyz, gọi i , j , k vectơ đơn vị, với M(x; y; z) OM → − → − − → − → − − → − → − − → − → − − A x i − y j − → z k B −x i − y j − → z k C x i + y j + → z k D x j + y i + → z k √ → − −a = 13 Câu 34 Trong không gian với hệ trục tọa độ Oxyz, cho ⃗a = m⃗i+3 ⃗j+2 k Hãy tìm m, biết → A m = B m = −1 C m = D m = Câu 35 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 5; 2),B(3; 7; −4) Tọa độ điểm M đối xứng với A qua B A (5; 9; −3) B (7; 9; −10) C (5; 9; −10) D (2; 6; −1) −a = (1; −1; 2), độ dài vectơ → −a Câu 36 Cho vectơ → √ √ A B C D − Câu 37 Trong không gian với hệ tọa độ (P) : x − 2y + z + = 0, cho hình hộp M biết M, M(0; 3; −2), M(2; 2; 1), D′ (3; 0; 1) Khi tọa độ điểm B là? A B(2; −1; 2) B B(2; −2; 1) C B(1; −2; −2) D B(−1; 2; 2) Câu 38 Cho điểm A(1; 2; 0), B(1; 0; −1), C(0; −1; 2) Tam giác ABC A tam giác có ba góc nhọn B tam giác vng đỉnh A C tam giác D tam giác cân đỉnh A Câu 39 Bảng biến thiên hình hàm số hàm số sau? x −∞ +∞ + y′ + +∞ y −∞ Trang 3/5 Mã đề 001 A y = 2x + x−1 B y = 2x − x+1 C y = 2x − x−1 D y = 2x + x−1 Câu 40 Cho tứ diện OABC có cạnh OA, OB, OC đơi vng góc OA = OB = OC = Tính thể tích V khối tứ diện OABC 1 B V = C V = D V = A V = Câu 41 Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vuông cân A BC = 2a Tính thể tích V khối lăng trụ ABC.A′ B′C ′ A V = a3 B V = 12a3 C V = 6a3 D V = 3a3 Câu 42 Hàm số hàm số nghịch biến R? A y = x4 − 2x2 + B y = −x2 + 3x + C y = −x3 − 2x + D y = x−3 5−x Câu 43 Đồ thị hàm số y = −x3 + 3x2 − 3x + có điểm cực trị? A B C D Câu 44 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (0; +∞) B (−1; +∞) C (−1; 0) D (−∞; 0) Câu 45 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 3a 2a 5a a A C B √ D √ 5 Câu 46 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = (−∞; 2) C S = [ 0; +∞) D S = [ -ln3; +∞) Câu 47 Kết đúng? R A sin2 x cos x = −cos2 x sin x + C C R sin3 x sin x cos x = − + C sin3 x + C B R sin2 x cos x = D R sin2 x cos x = cos2 x sin x + C √ Câu 48 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành π 10π A V = B V = C V = π D V = 3 Câu 49 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ 3ab 3a b A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 √ Câu 50 Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA′ = 3a Thể tích khối lăng trụ cho là: √ √ A 3a3 B 3a3 C 3a3 D a3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001