Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đ[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −15 B m = C m = 13 D m = −2 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu B πR3 C πR3 D 4πR3 A πR3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + ty = + 2tz = C x = + 2ty = + tz = − 4t D x = + 2ty = + tz = Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D Câu Cho < a , 1; < x , Đẳng thức sau sai? A aloga x = x B loga x2 = 2loga x C loga2 x = loga x D loga (x − 2)2 = 2loga (x − 2) Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 3ab2 B VS ABC = A VS ABC = 12 √ √ 12 3a b a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 Câu 7.√ Bất đẳng thức √ esau đúng? √ √ π e π A ( + 1) > ( + 1) B ( − 1) < ( − 1) C 3π < 2π D 3−e > 2−e Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 30a3 C 60a3 D 100a3 x−2 y x−1 Câu Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B ( ; − ; ) C (2 ; −3 ; 1) D ( ; − ; ) 3 3 3 3 6 R R R Câu 10 Nếu f (x) = g(x) = −4 ( f (x) + g(x)) A −6 B C D −2 Câu 11 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + 2ty = 2tz = + t B x = + ty = tz = − t C x = + ty = tz = + t D x = − ty = tz = + t Trang 1/5 Mã đề 001 Câu 12 Cho hàm số f (x) liên tục R R2 ( f (x) + 2x) = Tính A −9 B R2 f (x) C −1 D Câu 13 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 21 B 27 C 18 D 12 Câu 14 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 Câu 15 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 55 14 220 Câu 16 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −8 B −4 C −6 D −2 Câu 17 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −22016 B −21008 + C 21008 D −21008 Câu 18 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2k C A = D A = 2ki √ Câu 19 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B −1 ≤ m ≤ C m ≥ m ≤ D m ≥ m ≤ −1 Câu 20 Cho hai √ số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = Câu 21 Tính z thỏa mãn z(2 − i) + 13i = √ mô-đun số phức √ √ 34 34 A |z| = B |z| = C |z| = 34 D |z| = 34 3 Câu 22 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực phần ảo 2i C Phần thực −3 phần ảo là−2 D Phần thực là−3 phần ảo −2i Câu 23 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −7 C −3 D Câu 24 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D z Câu 25 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z √ √ A B 13 C D 11 Câu 26 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (3; 1; 4) B (−3; −1; 4) C (−3; −1; −4) D (3; −1; −4) Trang 2/5 Mã đề 001 Câu 27 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x + 1) + C B x + x x+1 x+1 + C C (x − 1) x + C D x2 x + C Câu 28 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = cos(2023x) B f (x) = 2023cos(2023x) cos(2023x) C f (x) = −2023cos(2023x) D f (x) = − 2023 R Câu 29 Tìm nguyên hàm I = xcosxdx A I = xsinx − cosx + C B I = xsinx + cosx + C x x C I = x sin + C D I = x2 cos + C 2 Câu 30 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ √ A f (x) = 2x + + C B f (x)dx = 2x + + C R R 1√ + C D f (x)dx = C f (x)dx = √ 2x + + C 2x + R4 R4 R3 Câu 31 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D Câu 32 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x − = B x + y + z − = C y − = D z − = Câu 33 Biết R1 x2 a a 3x − dx = 3ln − , a, b nguyên dương phân số tối giản Hãy + 6x + b b tính ab A ab = 12 B ab = C ab = D ab = −5 Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 97 85 C T = 13 A T = 13 B T = D T = 3 2z − i Câu 35 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| < B |A| > C |A| ≤ D |A| ≥ Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z2 | √ √ √ A P = + B P = 34 + C P = 26 D P = √ Câu 37 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A ≤ |z| ≤ B |z| > C < |z| < D |z| < 2 2 Câu 38 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm P Câu 39 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? B C A 2 D điểm Q D Trang 3/5 Mã đề 001 Câu 40 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 Câu 41 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? A < |z| < B < |z| < 2 C < |z| < 2 + z + z2 số thực − z + z2 D < |z| < Câu 42 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 + · · · + z2017 + z2017 Tính giá trị biểu thức P = z2017 2015 + z2016 A P = B P = 2016 C P = −2016 D P = Câu 43 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π A 6π B C D 5 Câu 44 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D √ Câu 45 Tính đạo hàm hàm số y = log4 x2 − x x B y′ = C y′ = √ A y′ = (x − 1) ln (x − 1)log4 e x2 − ln D y′ = 2(x2 x − 1) ln Câu 46 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a > a x = ay ⇔ x = y C Nếu a > a x > ay ⇔ x > y D Nếu a < a x > ay ⇔ x < y Câu 47 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 3π A ln + B 6π ln + 5 C ln + cos x π F(− ) = π Khi giá trị sin x + cos x 6π D 6π Câu 48 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B Câu 49 Biết a, b ∈ Z cho A R B C −2 (x + 1)e2x dx = ( D ax + b 2x )e + C Khi giá trị a + b là: C D Câu 50 Hàm số hàm số sau đồng biến R 4x + A y = −x3 − x2 − 5x B y = x+2 C y = x4 + 3x2 D y = x3 + 3x2 + 6x − Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001