Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai? A 5[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho mãn a > b > Kết luận√ sau sai? √ √ √ √5 hai số thực a, bthỏa √5 − 2 − A a < b b D ea > eb B a −u (2; −2; 1), kết luận sau đúng? Câu Trong hệ tọa độ Oxyz cho → √ không gian với→ → − − −u | = −u | = A | u | = B | u | = C |→ D |→ Câu Kết đúng? R R sin3 x A sin2 x cos x = + C B sin2 x cos x = cos2 x sin x + C 3 R R sin x + C D sin2 x cos x = −cos2 x sin x + C C sin x cos x = − p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux > thìy < −15 C Nếux = y = −3 D Nếu < x < y < −3 π π π x F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π ln π π ln π π ln π π ln π B F( ) = − C F( ) = − D F( ) = + A F( ) = + 4 4 4 Câu Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh nó√bằng A πRl B 2π l2 − R2 C 2πRl D π l2 − R2 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = − 4t B x = + 2ty = + tz = C x = + 2ty = + tz = D x = + ty = + 2tz = Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = (−∞; 2) C S = [ 0; +∞) D S = [ -ln3; +∞) Câu Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 13 B 20 C 18 D 17 Câu 10 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 56 B 64 C 48 D 76 Câu 11 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 60 B 40 C 30 D 50 Câu 12 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 21 B 18 C 27 D 12 Trang 1/5 Mã đề 001 x−2 y−6 z+2 Câu 13 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ B 10 C √ D √ A √ 10 53 Câu 14 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Câu 15 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A Q(4 ; ; 2) B P(4 ; −1 ; 3) C N(1 ; ; 7) D M(0 ; ; 2) Câu 16 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a C D a A 2a B 2 !2016 !2018 1−i 1+i + Câu 17 Số phức z = 1−i 1+i A −2 B + i C D Câu 18 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B C −7 D −3 Câu 19 2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ √ Cho số phức z1 = + √ B 10 C 30 D 10 A 130 (1 + i)(2 + i) (1 − i)(2 − i) Câu 20 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? C z = z A |z| = B z = D z số ảo z Câu 21 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A P(−2; 3) B Q(−2; −3) C M(2; −3) D N(2; 3) (1 + i)(2 − i) Câu 22 Mô-đun số phức z = √ + 3i √ A |z| = B |z| = C |z| = D |z| = Câu 23 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2k B A = 2ki C A = D A = √ Câu 24 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B ≤ m ≤ C −1 ≤ m ≤ D m ≥ m ≤ −1 Câu 25 Số phức z = A (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B 21008 C D Câu 26 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 0; 2) B C(−1; 0; −2) C C(1; 4; 4) D C(−1; −4; 4) R4 R3 R4 Câu 27 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D R1 R R1 R1 Câu 28 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A 12 B −3 C D −8 Trang 2/5 Mã đề 001 Câu 29 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) + C = f (x) B F(x) = f ′ (x) + C C F ′ (x) = f (x) D F(x) = f ′ (x) Câu 30 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A 2x + y − z − = B −2x + y − z − = C −2x + y − z + = D −2x + y − z + = Câu 31 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 1 2 B F(x) = (e x + 5) C F(x) = − (2 − e x ) D F(x) = − e x + C A F(x) = e x + 2 2 Câu 32 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = B I = C I = D I = 10 Câu 33 Tìm hàm số F(x) khơng nguyên hàm hàm số f (x) = sin2x A F(x) = −cos2x B F(x) = −cos2 x C F(x) = sin2 x D F(x) = − cos2x + z + z2 Câu 34 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 z+1 Câu 35 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 B |z| = C |z| = D |z| = A |z| = Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 37 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = D A = + i √ Giá trị lớn biểu thức Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 B Pmax = C Pmax = D Pmax = A Pmax = Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ B √ A C D 2 √ Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm Q D điểm M Câu 41 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số ảo B |z| = C z số thực không dương D Phần thực z số âm Trang 3/5 Mã đề 001 √ Câu 42 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 − ab − bc − ca B a + b + c C a2 + b2 + c2 + ab + bc + ca D Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 44 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vuông góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 15 a3 B C D A 16 3x Câu 45 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A Không tồn m B m = −2 C m = D m = Câu 46 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = |x − 2x|dx − |x2 − 2x|dx B R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx C R3 D R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx R3 |x − 2x|dx = − 2 R2 (x − 2x)dx + R3 (x2 − 2x)dx Câu 47 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D Câu 48 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 49 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (3; 5) C (1; 5) D (−1; 1) Câu 50 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 26abc C P = 2abc D P = 2a+b+c Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001