Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 C √ D √ A √ B 13 ′ Câu Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w √= x + iy mặt phẳng phức.√Để tam giác MNP √ số phức k B w = −√ 27 − i hoặcw =√− 27 + i A w = + √27 hoặcw = − √27 C w = + 27i hoặcw = − 27i D w = 27 − i hoặcw = 27 + i z Câu Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác cân B Tam giác OAB tam giác vuông C Tam giác OAB tam giác D Tam giác OAB tam giác nhọn 1+i z Câu GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 15 25 25 B S = C S = D S = A S = 4 √ Câu Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 50 B |z| = 10 C |z| = 33 D |z| = Câu Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 2π B 3π C π D 4π Câu Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A 10 B C D z+i+1 số ảo? Câu Tìm tập hợp điểm M biểu diễn số phức z cho w = z + z + 2i A Một đường thẳng B Một Parabol C Một Elip D Một đường tròn Câu Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A B 12 C 11 D Câu 10 Tập nghiệm bất phương trình x+1 < A (1; +∞) B [1; +∞) C (−∞; 1) D (−∞; 1] x2 − 16 x2 − 16 Câu 11 Có số nguyên x thỏa mãn log3 < log7 ? 343 27 A 92 B 186 C 184 D 193 Câu 12 Phần ảo số phức z = − 3i A B −3 C −2 D Trang 1/4 Mã đề 001 Câu 13 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n1 = (−1; 1; 1) C → n3 = (1; 1; 1) D → n2 = (1; −1; 1) Câu 14 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 A B C D Câu 15 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Câu 16 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 B y′ = C y′ = A y′ = x xln3 x D y′ = − xln3 Câu 17 Cho hình chóp S ABCD có tất cạnh a Gọi φ góc hai mặt phẳng (S BD) (S CD) Mệnh đề sau đúng?√ √ √ √ B tan φ = C tan φ = D tan φ = A tan φ = 2 Câu 18 Cho hàm số y = f (x) có f ′ (2) = Đặt g(x) = f (x2 + 1), giá trị g′ (1) A B C D 12 Câu 19 Thể tích khối trụ có chiều cao 3a bán kính đáy a A 3πa3 B 9πa3 C πa3 D 6πa3 Câu 20 Phương trình log x 5.log5 x = có nghiệm nguyên thuộc đoạn [−10; 10]? A 21 B C 10 D Câu 21 Diện tích tam giác có ba đỉnh ba điểm cực trị đồ thị hàm số y = x4 − 2x2 + A B C D n x2 Câu 22 Tìm hệ số x5 khai triển ( − ) , biết n số nguyên dương thỏa mãn 5Cnn−1 − Cn3 = x 35 35 35 35 A B − C D − 16 16 Câu 23 Năm 2022, hãng cơng nghệ có 30 triệu người dùng phần mềm họ Hãng đặt kế hoạch, năm tiếp theo, năm số lượng người dùng phần mềm tăng A Năm 2028 B Năm 2029 C Năm 2031 D Năm 2030 R1 Câu 24 Biết ( ) = a ln + b ln với a, b số nguyên Khẳng định x + 3x + đúng? A a + 2b = B a + b = −2 C a + b = D a + 2b = Câu 25 Nếu hàm số y = f (x) đồng biến khoảng (−1; 2) hàm số y = f (x + 2) đồng biến khoảng khoảng sau đây? A (−1; 2) B (−3; 0) C (−2; 4) D (1; 4) √ x Câu 26 Tìm nghiệm phương trình x = ( 3) A x = B x = C x = −1 D x = Câu 27 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Trang 2/4 Mã đề 001 Câu 28 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x C − D A B 6 Câu 29 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 2 C (S ) : (x − 2) + (y − 1) + (z + 1) = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 √ Câu 30 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang khơng có tiệm cận đứng B Khơng có tiệm cận ngang có tiệm cận đứng C Có tiệm cận ngang tiệm cận đứng D Khơng có tiệm cận Câu 31 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 B (m2 ) C (m2 ) D (m ) A 3(m2 ) Câu 32 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Câu 33 Cho a > a , Giá trị alog A B √ a bằng? √ C D √ Giá trị lớn biểu thức Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Câu 35 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D √ √ √ 42 √ + 3i+ 15 Mệnh đề đúng? Câu 36 Cho số phức z thỏa mãn − 5i |z| = z A < |z| < B < |z| < C < |z| < D < |z| < 2 Câu 37 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = 2016 C P = −2016 D P = √ 2 Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 39 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D Trang 3/4 Mã đề 001 Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ B P = 26 C P = 34 + D P = + A P = Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B √ C D 2 Câu 42 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = 2016 B P = C P = −2016 D max T = −a = (4; −6; 2) Phương Câu 43 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = + 2ty = −3tz = + t C x = + 2ty = −3tz = −1 + t R Câu 44 6x5 dxbằng B x = −2 + 2ty = −3tz = + t D x = −2 + 4ty = −6tz = + 2t x + C D 30x4 + C Câu 45 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = 3a3 B V = a3 C V = 2a3 D V = Câu 46 Tập nghiệm bất phương trình log3 (36 − x ) ≥ A (0; 3] B (−∞; 3] C [−3; 3] D (−∞; −3] ∪ [3; +∞) A 6x6 + C B x6 + C C Câu 47 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số ngun dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 48 Đồ thị hàm số y = x3 − 3x2 − 2x cắt trục hoành điểm? A B C D Câu 49 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A′ B′C ′ √ √ 2a3 a3 A V = B V = a3 C V = D V = 3a3 3 √ Câu 50 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x − 4)2 + (y + 8)2 = 20 B (x − 4)2 + (y + 8)2 = √ C (x + 4)2 + (y − 8)2 = D (x + 4)2 + (y − 8)2 = 20 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001