Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho các số phức z,w khác 0 được biểu diễn bởi hai điểm A, B trong[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 z Câu Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác nhọn B Tam giác OAB tam giác C Tam giác OAB tam giác cân D Tam giác OAB tam giác vuông Câu GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 25 25 A S = B S = C S = D S = 1+i z 15 Câu Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x + y − = D x − y + = Câu (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 B √ C D √ A √ 13 Câu Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 Câu Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w√ = x + iy mặt phẳng phức √ Để tam giác MNP √ số phức k A w = − 27 B w = 27√− i hoặcw = 27 √ + i √ − i hoặcw = − 27 √ + i C w = + 27i hoặcw = − 27i D w = + 27 hoặcw = − 27 √ Câu Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 33 B |z| = 10 C |z| = 50 D |z| = √ Câu (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = x−2 y−1 z−1 = = Gọi (P) 2 −3 mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Câu Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : Câu 10 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 105 B 210 C 30 D 225 Câu 11 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D Trang 1/4 Mã đề 001 Câu 12 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d > R C d = R D d < R Câu 13 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ B 14 C 18 + D 28 A 11 + Câu 14 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 60◦ B 30◦ C 90◦ D 45◦ Câu 15 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho D πrl2 A 2πrl B πrl C πr2 l 3 Câu 16 Tập nghiệm bất phương trình log(x − 2) > A (2; 3) B (3; +∞) C (12; +∞) D (−∞; 3) Câu 17 Đặt log2 = a, log2 = b Khi log5 b a C D a − b A ab B b a Câu 18 Cho hình chóp S ABC có đáy tam giác vng, cạnh huyền BC = a Hình chiếu vng góc S lên mặt(ABC) trùng với trung điểm BC Biết S B = a Số đo góc S A mặt phẳng (ABC) A 45◦ B 30◦ C 60◦ D 90◦ R2 R2 R2 Câu 19 Biết f (x) = 2, g(x) = Khi ( f (x) − 2g(x)) A −4 1 B −1 C D Câu 20 Xét a, b số thực dương thỏa mãn 4log2 a+2log4 b = Khẳng định sau đúng? A a4 b2 = B a4 b = C a4 b = D a4 b2 = Câu 21 Đạo hàm hàm số y = ln(3x + 1) ln 3 B y′ = C y′ = D y′ = A y′ = 3x + 3x + 3x + (3x + 1) Câu 22 Phương trình log x 5.log5 x = có nghiệm nguyên thuộc đoạn [−10; 10]? A 21 B 10 C D Câu 23 Cho hàm số f (x) có đạo hàm f ′ (x) = (x2 − 1)(x − 4) với x ∈ R Hàm số g(x) = f (−x) có điểm cực đại? A B C D n x Câu 24 Tìm hệ số x5 khai triển ( − ) , biết n số nguyên dương thỏa mãn 5Cnn−1 − Cn3 = x 35 35 35 35 A − B − C D 16 16 Câu 25 Tập nghiệm bất phương trình log (2x + 1) ≥ log (x + 2) A (−2; 1] B (− ; 1] R Câu 26 Tính nguyên hàm cos 3xdx A −3 sin 3x + C B sin 3x + C 4 C [− ; +∞] D [1; +∞) C sin 3x + C D − sin 3x + C Trang 2/4 Mã đề 001 a3 Câu 27 Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 1350 B 300 C 450 D 600 Câu 28 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 29 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ −1 B m ≥ C m > D m ≥ 2x + 2017 (1) Mệnh đề đúng? Câu 30 Cho hàm số y = x + A Đồ thị hàm số (1) tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = B Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 C Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng √ Câu 31 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận B Khơng có tiệm cận ngang có tiệm cận đứng C Có tiệm cận ngang tiệm cận đứng D Có tiệm cận ngang khơng có tiệm cận đứng Câu 32 Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab) = ln a ln b B ln(ab2 ) = ln a + (ln b)2 a ln a C ln( ) = D ln(ab2 ) = ln a + ln b b ln b Câu 33 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B −1 C D π Câu 34 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 B T = 13 C T = D T = 13 A T = 3 Câu 36 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 37 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 22016 B −21008 C −22016 D 21008 Câu 38 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A P = −2016 B max T = C P = 2016 D P = Trang 3/4 Mã đề 001 = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp ! sau đây? ! ! 9 A ; B 0; C ; D ; +∞ 4 4 z số thực Tính giá trị biểu Câu 40 Cho số phức z , cho z số thực w = + z2 |z| bằng? thức + |z|2 √ B C D A Câu 41 Cho số phức z thỏa mãn |z − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 √ Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Câu 43 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; 3; −4) −n = (2; −3; 4) −n = (−2; 3; 4) −n = (−2; 3; 1) A → B → C → D → Câu 39 Cho số phức z thỏa mãn (3 − 4i)z − Câu 44 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = 3a3 B V = 2a3 C V = a3 D V = x−1 y+2 z Câu 45 Đường thẳng (∆) : = = không qua điểm đây? −1 A (−1; −3; 1) B (3; −1; −1) C (1; −2; 0) D A(−1; 2; 0) x+1 y z−2 Câu 46 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : = = Viết 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : x − 2y + = B (P) : y + z − = C (P) : y − z + = D (P) : x − 2z + = Câu 47 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx 32 26 C D 10 3 Câu 48 Đường cong hình bên đồ thị hàm số đây? A y = −x3 + 3x2 + B y = x4 − 2x2 + C y = −x4 + 2x2 + D y = x3 − 3x2 + A B Câu 49 Tính đạo hàm hàm số y = 2023 x A y′ = x.2023 x−1 B y′ = 2023 x ln 2023 C y′ = 2023 x ln x D y′ = 2023 x − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 50 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ → √ → − → → − − − − −a = A c = B b ⊥ c C → D b ⊥→ a - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001