1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi minh họa thpt môn toán (992)

4 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 122,83 KB

Nội dung

Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho số phức z thỏa mãn |z| = 4 Biết rằng tập hợp điểm biểu diễn c[.]

Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 22 B r = 20 C r = D r = √ Câu (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = D P = C P = 2 −2 − 3i z + = Câu Tìm giá trị lớn |z| biết z thỏa mãn điều kiện − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A π B 2π C 4π D 3π Câu (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| + 2|z√− 1| √ √ √ B max T = C max T = 10 D max T = A max T = Câu Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w √= x + iy mặt phẳng phức √ Để tam giác MNP √ số phức k 27 hoặcw = − 27 B w = 27 − i hoặcw = 27 +√i A w = + √ √ √ C w = − 27 − i hoặcw = − 27 + i D w = + 27i hoặcw = − 27i Câu Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 1)2 + (y − 4)2 = 125 B (x + 1)2 + (y − 2)2 = 125 2 C (x − 5) + (y − 4) = 125 D x = Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Câu 10 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 + C B f (x) = −sinx + x2 + C A f (x) = −sinx + R R x2 C f (x) = sinx + x2 + C D f (x) = sinx + + C Câu 11 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ Câu 12 Nếu A −1 B y′ = xπ−1 R4 −1 C y′ = πxπ−1 R4 R4 f (x) = −1 g(x) = −1 [ f (x) + g(x)] B C D y′ = π−1 x π D Trang 1/4 Mã đề 001 Câu 13 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A 12 B C D Câu 14 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 B C −2 D −3 A Câu 15 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B C D A 35 35 35 Câu 16 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln B ln(6a2 ) C lna D ln ( ) , thỏa mãn f ′ (x) = , f (0) = f (1) = Giá trị Câu 17 Cho hàm số f (x) xác định R\ 2x − biểu thức f (−1) + f (4) A + ln 21 B + ln 21 C + ln 12 D + ln 12 x−2 Chọn khẳng định đúng: Câu 18 Cho hàm số y = x+1 A Hàm số nghịch biến R B Hàm số nghịch biến khoảng (−∞; −1) C Hàm số đồng biến R D Hàm số đồng biến khoảng (−∞; −1) √ Câu 19 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a Cạnh bên S A = a vng góc với đáy (ABCD) Diện tích mặt cầu ngoại tiếp hình chóp √ A 4πa2 B 2πa2 C 8πa2 D πa2 Câu 20 Cho hàm số f (x) có đạo hàm f ′ (x) = (x2 − 1)(x − 4) với x ∈ R Hàm số g(x) = f (−x) có điểm cực đại? A B C D Câu 21 Có số tự nhiên có chữ số mà có chữ số đầu chữ số cuối giống nhau? A 756 B 5040 C 840 D 4536 9π Câu 22 Trên khoảng (0; ) phương trình sin x = có nghiệm? A B C D Câu 23 Cho hình chóp S ABC có đáy tam giác vng, cạnh huyền BC = a Hình chiếu vng góc S lên mặt(ABC) trùng với trung điểm BC Biết S B = a Số đo góc S A mặt phẳng (ABC) A 30◦ B 90◦ C 60◦ D 45◦ Câu 24 Cho cấp số nhân (un ) có u1 = 2, cơng bội q = Hỏi u100 bao nhiêu? A 2.399 B 3.299 C 3.2100 D 2.3100 ′ Câu 25 Cho hàm số y = f (x) có đạo hàm R f (x) = (x − 1)(x + 2) với x Số giá trị nguyên m cho hàm số y = f ( 2x3 + 3x2 − 12x − m ) có 11 điểm cực trị A 26 B 24 C 23 D 27 Câu 26 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ −1 C m > D m ≥ Câu 27 Tập nghiệm bất phương trình log (x − 1) ≥ là: A (−∞; 2] B (1; 2] C (1; 2) D [2; +∞) Trang 2/4 Mã đề 001 √ Câu 28 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang tiệm cận đứng B Khơng có tiệm cận C Khơng có tiệm cận ngang có tiệm cận đứng D Có tiệm cận ngang khơng có tiệm cận đứng Câu 29 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 1 C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 Câu 30 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m = C m , −1 D m , Câu 31 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 C D − A B 6 √ d = 1200 Gọi Câu 32 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a 15 a A a 15 B C D 3 Câu 33 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 0; 3) B A(1; 0; 3) C A(1; 2; 0) D A(0; 2; 3) Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 1 B ; C 0; D ; A ; +∞ 4 4 Câu 35 Cho số phức z , thỏa mãn A |z| = z+1 số ảo Tìm |z| ? z−1 B |z| = C |z| = D |z| = √ Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm Q D điểm M Câu 37 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = + i D A = Câu 38 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 39 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 85 97 A T = B T = C T = 13 D T = 13 3 Trang 3/4 Mã đề 001 Câu 40 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A Phần thực z số âm B z số ảo C z số thực không dương D |z| = Câu 41 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 21008 B −22016 C −21008 D 22016 z số thực Giá trị lớn Câu 42 Cho số phức z thỏa mãn z số thực ω = + z2 biểu thức M = |z + − i| √ √ A B C 2 D Câu 43 Thể tích khối lập phương có cạnh 3a là: A 2a3 B 3a3 C 27a3 D 8a3 Câu 44 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A −4 B C 2i D Câu 45 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng√đáy, S A = 2a Gọi φ góc tạo hai mặt phẳng√(S AC), (S BC) Tính cos√ φ =? 3 15 A B C D 2 Câu 46 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A [−3; 3] B (−∞; 3] C (−∞; −3] ∪ [3; +∞) D (0; 3] Câu 47 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; −3; 4) −n = (−2; 3; 1) −n = (2; 3; −4) −n = (−2; 3; 4) A → B → C → D → − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 48 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ → √ → − → → − − − −c = − B b ⊥ a C → D b ⊥→ c A a = Câu 49 Tính đạo hàm hàm số y = 2023 x A y′ = x.2023 x−1 B y′ = 2023 x C y′ = 2023 x ln 2023 D y′ = 2023 x ln x Câu 50 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 84 B S = 364 C S = 96 D S = 1979 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001

Ngày đăng: 10/04/2023, 11:28