Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm tập hợp các điểm M biểu diễn số phức z sao cho ∣∣∣∣∣ z − z z[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 z−z =2? Câu Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường thẳng B Một Parabol C Một Elip D Một đường tròn z Câu Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác cân B Tam giác OAB tam giác nhọn C Tam giác OAB tam giác vuông D Tam giác OAB tam giác Câu Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w = số phức k √ x + iy mặt phẳng phức.√Để tam giác MNP √ A w = 1√+ 27i hoặcw =√1 − 27i B w = − 27 − i hoặcw = − 27 + i √ √ C w = 27 − i hoặcw = 27 + i D w = + 27 hoặcw = − 27 √ Câu (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π C D 5π A 25π B Câu Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt√phẳng phức Khi độ dài MN √ A MN = B MN = C MN = D MN = Câu Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 2π B 4π C 3π D π √ Câu (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A |z| < B |z| > C ≤ |z| ≤ D < |z| < 2 2 x−2 y−1 z−1 Câu Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi (P) 2 −3 mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Câu 10 Đồ thị hàm số có dạng đường cong hình bên? x−3 A y = x4 − 3x2 + B y = x2 − 4x + C y = D y = x3 − 3x − x−1 Câu 11 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (2; 4; 6) B (−1; −2; −3) C (−2; −4; −6) D (1; 2; 3) Trang 1/4 Mã đề 001 Câu 13 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 B C D A 2 Câu 14 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (3; +∞) B (0; 2) C (1; 3) D (−∞; 1) Câu 15 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A 15 B C D 17 Câu 16 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = xπ−1 C y′ = πxπ−1 D y′ = πxπ π Câu 17 Cho hình nón có độ dài đường sinh l = 6, bán kính đáy r = Diện tích xung quanh hình nón cho A 48π B 12π C 24π D 36π √ Câu 18 Cho hình trụ có chiều cao a Trên đường tròn đáy thứ hình trụ lấy hai điểm A, B, đường trịn đáy thứ hai hình trụ lấy hai điểm C, D cho ABCD hình vng mặt phẳng(ABCD) tạo với đáy hình trụ góc 45◦ Thể tích√khối trụ cho √ √ √ 2πa3 2πa3 3 · D B 2πa C A 2πa Câu 19 Cho hàm số f (x) = ax3 − 4(a + 2)x + với a tham số Nếu max f (x) = f (−2) max f (x) (−∞;0] A −9 [0;3] B −8 C D ( ) , thỏa mãn f ′ (x) = , f (0) = f (1) = Giá trị Câu 20 Cho hàm số f (x) xác định R\ 2x − biểu thức f (−1) + f (4) A + ln 21 B + ln 21 C + ln 12 D + ln 12 Câu 21 Cho hình chóp S ABC có đáy tam giác vng, cạnh huyền BC = a Hình chiếu vng góc S lên mặt(ABC) trùng với trung điểm BC Biết S B = a Số đo góc S A mặt phẳng (ABC) A 30◦ B 60◦ C 45◦ D 90◦ Câu 22 Nếu hàm số y = f (x) đồng biến khoảng (−1; 2) hàm số y = f (x + 2) đồng biến khoảng khoảng sau đây? A (−3; 0) B (−1; 2) C (−2; 4) D (1; 4) Câu 23 Diện tích tam giác có ba đỉnh ba điểm cực trị đồ thị hàm số y = x4 − 2x2 + A B C D ′ Câu 24 Cho hàm số y = f (x) có đạo hàm R f (x) = (x − 1)(x + 2) với x Số giá trị nguyên m cho hàm số y = f ( 2x3 + 3x2 − 12x − m ) có 11 điểm cực trị A 23 B 27 C 26 D 24 √ Câu 25 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a Cạnh bên S A = a vng góc với đáy (ABCD) Diện tích mặt cầu ngoại tiếp hình chóp √ A 2πa2 B 4πa2 C πa2 D 8πa2 √ Câu 26 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C D a 2 Trang 2/4 Mã đề 001 Câu 27 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 28 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) 1 A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = Câu 29 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A π B C −1 D Câu 30 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có√diện tích lớn bằng? √ √ 3 3 (m ) B (m ) C (m2 ) D 3(m2 ) A Câu 31 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D −z x y Câu 32 Cho x, y, z ba số thực khác thỏa mãn = = 10 Giá trị biểu thức A = xy + yz + zxbằng? A B C D ; y = 0; x = 0; x = Câu 33 Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln + B ln − C − ln D − ln − 2 2 Câu 34 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ C D 13 A B √ Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 36 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B 15 C 10 D Câu 37 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 Câu 38 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| B P = −2016 C P = D P = 2016 A max T = 2z − i Câu 39 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| ≥ B |A| ≤ C |A| < D |A| > Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √ thức P = |z1 | + |z √2 | √ √ A P = 34 + B P = C P = 26 D P = + Trang 3/4 Mã đề 001 = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp ! sau đây? ! ! 9 A ; B 0; C ; D ; +∞ 4 4 z số thực Tính giá trị biểu Câu 42 Cho số phức z , cho z số thực w = + z2 |z| bằng? thức + |z|2 √ B C D A Câu 43 Đường cong hình bên đồ thị hàm số đây? A y = x3 − 3x2 + B y = x4 − 2x2 + C y = −x4 + 2x2 + D y = −x3 + 3x2 + Câu 41 Cho số phức z thỏa mãn (3 − 4i)z − Câu 44 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(−1; 2; −3); R = B I(1; 2; −3); R = C I(1; 2; 3); R = D I(1; −2; 3); R = Câu 45 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng√đáy, S A = 2a Gọi φ góc √ tạo hai mặt phẳng√(S AC), (S BC) Tính cos φ =? 15 3 A B C D 5 → Câu 46 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương −a = (4; −6; 2) Phương trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t C x = + 2ty = −3tz = −1 + t B x = −2 + 4ty = −6tz = + 2t D x = + 2ty = −3tz = + t Câu 47 Với a số thực dương tùy ý, log5 (5a) A + log5 a B − log5 a C + log5 a D − log5 a Câu 48 Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x B y′ = 2023 x ln 2023 D y′ = x.2023 x−1 C y′ = 2023 x ln x Câu 49 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; −3; 4) −n = (−2; 3; 1) −n = (2; 3; −4) −n = (−2; 3; 4) A → B → C → D → R Câu 50 6x5 dxbằng A x6 + C B 6x6 + C C 30x4 + C D x6 + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001