Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0 Gọi[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w = √ x + iy mặt phẳng phức √ Để tam giác MNP √ số phức k B w = 27√− i hoặcw = 27 √ + i A w = + √ 27i hoặcw = −√ 27i D w = + 27 hoặcw = − 27 C w = − 27 − i hoặcw = − 27 + i Câu Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường tròn Tính bán kính r đường trịn A r = B r = 22 C r = D r = 20 √ Câu (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 2π B π C 4π D 3π Câu Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A x = B (x − 5)2 + (y − 4)2 = 125 C (x − 1)2 + (y − 4)2 = 125 D (x + 1)2 + (y − 2)2 = 125 Câu Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π B 5π C 25π D A Câu Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 2π B 4π C π D 3π Câu (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B √ C D √ 13 Câu Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln B ln(6a2 ) C lna Câu 10 Phần ảo số phức z = − 3i A −3 B C D −2 Câu 11 Tập nghiệm bất phương trình log(x − 2) > A (2; 3) B (−∞; 3) C (3; +∞) D (12; +∞) D ln Câu 12 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; −2; −3) B (−1; 2; 3) C (1; −2; 3) D (1; 2; −3) 2x + Câu 13 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 1 A y = − B y = C y = D y = − 3 3 Trang 1/4 Mã đề 001 Câu 14 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 + C B f (x) = sinx + x2 + C A f (x) = −sinx + R R x2 C f (x) = −sinx + x2 + C D f (x) = sinx + + C Câu 15 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n3 = (1; 1; 1) B → n2 = (1; −1; 1) C → n1 = (−1; 1; 1) D → n4 = (1; 1; −1) Câu 16 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16 16 16π A B C D 15 15 Câu 17 Đạo hàm hàm số y = ln(3x + 1) ln 3 B y′ = C y′ = D y′ = A y′ = 3x + 3x + 3x + (3x + 1)2 Câu 18 Khẳng định sau đúng? R R A sin 2x = cos 2x + C B sin 2x = − cos 2x + C R R D sin 2x = cos 2x + C C sin 2x = − cos 2x + C Câu 19 Cho hàm số y = x4 − 3x2 + 2023 có đồ thị (C) Hệ số góc tiếp tuyến (C) điểm có hồnh độ −1 A B −2 C 10 D −10 Câu 20 Nghiệm phương trình x+1 = 92x 1 A x = B x = C x = −1 D x = 9π Câu 21 Trên khoảng (0; ) phương trình sin x = có nghiệm? A B C D Câu 22 Cho hàm số f (x) = ax3 − 4(a + 2)x + với a tham số Nếu max f (x) = f (−2) max f (x) (−∞;0] A B −9 C −8 [0;3] D Câu 23 Cho khối lăng trụ tam giác ABC.A′ B′C ′ Biết thể tích khối chóp A.BA′C ′ 12, thể tích khối lăng trụ cho A 36 B 18 C 24 D 72 Câu 24 Tập nghiệm bất phương trình log (2x + 1) ≥ log (x + 2) 4 1 A (− ; 1] B [− ; +∞] C [1; +∞) D (−2; 1] 2 Câu 25 Xét tất cặp số nguyên dương (a; b), a ≥ b cho ứng với cặp số có 50 số nguyên dương x thỏa mãn ln a − ln x < ln b Hỏi tổng a + bnhỏ bao nhiêu? A 50 B 22 C 36 D 11 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(3; 7; 4) B C(5; 9; 5) C C(1; 5; 3) D C(−3; 1; 1) Câu 27 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32π 32 A V = B V = C V = D V = 3 Trang 2/4 Mã đề 001 Câu 28 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 29 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 2; 3) B A(0; 0; 3) C A(1; 2; 0) D A(1; 0; 3) R Câu 30 Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(x) − + C Câu 31 Biết R5 A T = dx = ln T Giá trị T là: 2x − √ B T = C T = D T = 81 Câu 32 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 2π C π D 4π Câu 33 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A < m < B Không tồn m C m < D m < 3 + z + z2 Câu 34 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = (|z| − 4)2 D P = |z|2 − Câu 36 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2 Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B C D √ 2 √ Câu 38 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a2 + b2 + c2 − ab − bc − ca C a2 + b2 + c2 + ab + bc + ca D a + b + c Câu 39 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = C A = −1 D A = z+1 Câu 40 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = Trang 3/4 Mã đề 001 Câu 41 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 85 97 D T = A T = 13 B T = 13 C T = 3 Câu 42 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = 2016 C P = −2016 D P = Câu 43 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; 2; 3); R = B I(−1; 2; −3); R = C I(1; −2; 3); R = D I(1; 2; −3); R = Câu 44 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 C D A −16 B 16 Câu 45 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m > B −1 ≤ m ≤ C m < −1 D −1 ≤ m < Câu 46 Số phức z = − 3i có phần ảo A −3 B C D 3i Câu 47 Cần chọn người công tác từ tổ có 30 người, số cách chọn A 10 B C30 C 330 D A330 Câu 48 Biết phương trình log22 x − 7log2 x + = có nghiệm x1 , x2 Giá trị x1 x2 A 64 B 128 C D 512 Câu 49 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(1; −2) B x = C x = −2 D M(−2; −4) π R4 Câu 50 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 − A 16 π2 + 16π − B 16 π2 + 16π − 16 C 16 π2 + 15π D 16 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001