Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 (Toán Học Tuổi Trẻ Lần 8) Xét số phức z thỏa mãn 2|z− 1|+ 3|z− i|[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 B |z| > C < |z| < D ≤ |z| ≤ A |z| < 2 2 Câu Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x + y − = C x − y + = D x − y + = Câu Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi độ dài MN √ √ A MN = B MN = C MN = D MN = Câu Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 22 B r = 20 C r = D r = Câu Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π C D 5π A 25π B 1+i z Câu GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 15 15 25 A S = B S = C S = D S = 2 4 √ Câu (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A x = B (x − 1)2 + (y − 4)2 = 125 2 C (x + 1) + (y − 2) = 125 D (x − 5)2 + (y − 4)2 = 125 Câu Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 B y′ = − C y′ = D y′ = A y′ = xln3 xln3 x x Câu 10 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C −1 D Câu 11 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 14 B 11 + C 28 D 18 + Câu 12 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A 12 B C D Trang 1/4 Mã đề 001 Câu 13 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 3 A 2a B a C a D a 3 Câu 14 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x=5+t x = + 2t x = + 2t y = + 3t y = + 2t y = −1 + t y = −1 + 3t A B C D z = −1 + t z = + 3t z = −1 + 3t z = −1 + t Câu 15 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d < R C d = R D d = 800π Gọi A B hai điểm thuộc Câu 16 Cho khối nón có đỉnh S , chiều cao thể tích đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 D A B C 24 Câu 17 Diện tích tam giác có ba đỉnh ba điểm cực trị đồ thị hàm số y = x4 − 2x2 + C D A B Câu 18 Nghiệm phương trình x+1 = 92x 1 A x = B x = C x = −1 D x = Câu 19 Có số nguyên dương a cho ứng với a có hai số nguyên b thỏa mãn (b − 2)(b − + log2 a) < 0? A 66 B 64 C 65 D 67 Câu 20 Nếu hàm số y = f (x) đồng biến khoảng (−1; 2) hàm số y = f (x + 2) đồng biến khoảng khoảng sau đây? A (1; 4) B (−2; 4) C (−1; 2) D (−3; 0) Câu 21 Xét a, b số thực dương thỏa mãn 4log2 a+2log4 b = Khẳng định sau đúng? A a4 b = B a4 b2 = C a4 b2 = D a4 b = 1 Câu 22 Tập xác định hàm số y = (x − 2) A R B R\{2} C [2; +∞) D (2; +∞) Câu 23 Thể tích khối trụ có chiều cao 3a bán kính đáy a A 3πa3 B 6πa3 C 9πa3 D πa3 Câu 24 Đặt log2 = a, log2 = b Khi log5 a b A B C a − b b a R2 R2 R2 Câu 25 Biết f (x) = 2, g(x) = Khi ( f (x) − 2g(x)) A 1 B D ab C −1 D −4 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; −1; 2) C I(1; 1; 2) D I(0; 1; 2) Câu 27 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B π C 2π D 4π Trang 2/4 Mã đề 001 √ Câu 28 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (1; +∞) B ( ; +∞) C (0; ) D (0; 1) 4 Câu 29 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A < m < B −2 ≤ m ≤ C m = D −2 < m < Câu 30 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ A − ln 2 B ln − C ln + D − ln − Câu 31 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 2 2 2 C (S ) : (x − 2) + (y − 1) + (z + 1) = D (S ) : (x + 2) + (y + 1) + (z − 1) = 3 Câu 32 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m = C m , D m , −1 Câu 33 Cho a, b hai số thực dương Mệnh đề đúng? ln a a A ln(ab2 ) = ln a + ln b B ln( ) = b ln b C ln(ab2 ) = ln a + (ln b) D ln(ab) = ln a ln b Câu 34 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = 2016 C P = −2016 D P = Câu 35 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D √ điểm A hình vẽ bên điểm Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm P √ Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 38 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √ thức P = |z1 | + |z2 | √ √ √ A P = 34 + B P = + C P = D P = 26 Trang 3/4 Mã đề 001 Câu 40 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B z số ảo C Phần thực z số âm D |z| = √ 2 Mệnh đề Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 42 Cho a, b, c số thực z = − + 2 A a2 + b2 + c2 − ab − bc − ca B 2 C a + b + c + ab + bc + ca D a + b + c Câu 43 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B C −4 D 2i Câu 44 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C + log5 a D − log5 a Câu 45 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = B S = −5 C S = −6 D S = Câu 46 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số ngun dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 47 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ A 6πa2 B 5πa2 C 4πa2 D 2πa2 √ Câu 48 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x − 4)2 + (y + 8)2 = B (x + 4)2 + (y − 8)2 = 20 √ 2 C (x − 4) + (y + 8) = 20 D (x + 4)2 + (y − 8)2 = Câu 49 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m < −1 B m > C −1 ≤ m ≤ D −1 ≤ m < x+1 y z−2 = = Viết Câu 50 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : y − z + = B (P) : x − 2z + = C (P) : y + z − = D (P) : x − 2y + = - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001