Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện ∣∣∣∣∣[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 −2 − 3i z + = Câu Tìm giá trị lớn |z| biết z thỏa mãn điều kiện − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ B √ C √ D 13 Câu Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt√phẳng phức Khi độ dài MN √ A MN = B MN = C MN = D MN = Câu Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w√ = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = − 27 − i hoặcw = − 27 + i B w = + 27 hoặcw = − 27 √ √ √ √ C w = + 27i hoặcw = − 27i D w = 27 − i hoặcw = 27 + i Câu (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| + 2|z√− 1| √ √ √ B max T = C max T = D max T = 10 A max T = Câu Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 1)2 + (y − 4)2 = 125 B (x + 1)2 + (y − 2)2 = 125 C (x − 5)2 + (y − 4)2 = 125 D x = Câu Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 25π C 5π D Câu Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 20 B r = C r = D r = 22 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (2; 4; 6) B (−1; −2; −3) C (1; 2; 3) D (−2; −4; −6) Câu 10 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (0; 2) C (3; +∞) Câu 11 Cho số phức z = + 9i, phần thực số phức z2 A B 36 C −77 R2 R2 Câu 12 Nếu f (x) = [ f (x) − 2] A B C −2 D (−∞; 1) D 85 D Trang 1/4 Mã đề 001 Câu 13 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D ax + b có đồ thị đường cong hình bên Câu 14 Cho hàm số y = cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (−2; 0) B (0; 2) C (0; −2) D (2; 0) Câu 15 Tập nghiệm bất phương trình x+1 < A (−∞; 1) B (1; +∞) C [1; +∞) D (−∞; 1] Câu 16 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 17 Phương trình log x 5.log5 x = có nghiệm nguyên thuộc đoạn [−10; 10]? A 21 B C 10 D Câu 18 Đạo hàm hàm số y = ln(3x + 1) 3 B y′ = A y′ = 3x + (3x + 1)2 C y′ = ln 3x + D y′ = 3x + Câu 19 Cho hình chóp S ABCD có tất cạnh a Gọi φ góc hai mặt phẳng (S BD) (S CD) Mệnh √ đề sau đúng? √ √ √ A tan φ = B tan φ = C tan φ = D tan φ = 2 Câu 20 Thể tích khối trụ có chiều cao 3a bán kính đáy a A 6πa3 B πa3 C 3πa3 D 9πa3 Câu 21 Cho hàm số f (x) có đạo hàm f ′ (x) = (x2 − 1)(x − 4) với x ∈ R Hàm số g(x) = f (−x) có điểm cực đại? A B C D Câu 22 Khẳng định sau đúng? R A sin 2x = cos 2x + C R C sin 2x = cos 2x + C sin 2x = − cos 2x + C R D sin 2x = − cos 2x + C B R √ Câu 23 Cho hình trụ có chiều cao a Trên đường trịn đáy thứ hình trụ lấy hai điểm A, B, đường trịn đáy thứ hai hình trụ lấy hai điểm C, D cho ABCD hình vng mặt phẳng(ABCD) tạo với đáy hình góc 45◦ Thể tích√khối trụ cho √ trụ √ √ 2πa3 2πa3 A 2πa3 B · C D 2πa3 √ √ Câu 24 Cho hình chóp S ABC có đáy tam giác vuông A AB = 3, AC = 7, S A = Hai mặt bên (S AB) (S AC) tạo với đáy góc 450 600 Thể tích khối chóp cho √ √ 7 A B C D 6 2 Câu 25 Có số nguyên dương a cho ứng với a có hai số nguyên b thỏa mãn (b − 2)(b − + log2 a) < 0? A 65 B 67 C 64 D 66 √ Câu √ 26 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 1200 B 450 C 300 D 600 Trang 2/4 Mã đề 001 Câu 27 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 8π 32 A V = B V = C V = D V = 5 Câu 28 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m , C m , −1 D m = 2x + 2017 (1) Mệnh đề đúng? Câu 29 Cho hàm số y = x + A Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 D Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = Câu 30 Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + ln b B ln(ab2 ) = ln a + (ln b)2 ln a a D ln(ab) = ln a ln b C ln( ) = b ln b √ Câu 31 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a A a C D B 2 Câu 32 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − 12 4m2 − m2 − B C D A 2m m 2m 2m Câu 33 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = −x4 + 2x2 + C y = x4 + 2x2 + D y = x4 + Câu 34 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = 2016 B P = C P = −2016 D max T = Câu 35 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Câu 36 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B 15 C D 10 Câu 37 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm R D điểm Q Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Trang 3/4 Mã đề 001 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = (|z| − 2)2 D P = |z|2 − √ điểm A hình vẽ bên điểm Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm N Câu 41 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 85 97 B T = 13 A T = C T = 13 D T = 3 √ Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = R Câu 43 6x5 dxbằng A 6x6 + C B x6 + C C 30x4 + C D x6 + C Câu 44 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B m > C m < −1 D −1 ≤ m < √ 2, OD = Câu 45 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ B d = a C d = a D d = 2a A d = a Câu 46 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; −3; 4) −n = (−2; 3; 1) −n = (−2; 3; 4) −n = (2; 3; −4) A → B → C → D → Câu 47 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 3 A V = 2a B V = 3a C V = a D V = → − Câu 48 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương a = (4; −6; 2) Phương trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t C x = + 2ty = −3tz = −1 + t B x = + 2ty = −3tz = + t D x = −2 + 4ty = −6tz = + 2t Câu 49 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C + log5 a D − log5 a Câu 50 Thể tích khối lập phương có cạnh 3a là: A 8a3 B 2a3 C 3a3 D 27a3 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001