Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm tập hợp các điểm M biểu diễn số phức z sao cho ∣∣∣∣∣ z − z z[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 z − z =2? Câu Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường thẳng B Một đường tròn C Một Parabol D Một Elip Câu Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A −1 B C D Câu Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi độ dài MN √ √ D MN = A MN = B MN = C MN = √ Câu (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A ≤ |z| ≤ B < |z| < C |z| < D |z| > 2 2 Câu (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ C √ D √ B 13 √ Câu Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ B |z| = 50 C |z| = 10 D |z| = A |z| = 33 Câu Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 1+i Câu GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 15 25 25 A S = B S = C S = D S = 4 2 Câu Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16 16 16π A B C D 9 15 15 Câu 10 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (−2; 0) B (0; −2) C (2; 0) D (0; 2) Câu 11 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 3 A a B a C 2a D a Trang 1/4 Mã đề 001 Câu 12 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x=5+t x = + 2t x = + 2t y = −1 + 3t y = + 2t y = + 3t y = −1 + t D A B C z = −1 + t z = + 3t z = −1 + t z = −1 + 3t Câu 13 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 + C B f (x) = −sinx + x2 + C A f (x) = sinx + R R x2 C f (x) = −sinx + + C D f (x) = sinx + x2 + C Câu 14 Xét số phức z thỏa mãn z − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 28 B 14 C 11 + D 18 + Câu 15 Cho số phức z = + 9i, phần thực số phức z2 A 36 B C −77 D 85 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 ′ ′ ′ Câu cân A ,AB = a,AA′ = √ 17 Cho hình lăng trụ đứng ABC.A B C có đáy ABC tam giác vng Khoảng cách hai đường thẳng AM B′C a Gọi M trung điểm BC√ √ √ a 2a 3a A B C D 2a 2 Câu 18 Phương trình log x 5.log5 x = có nghiệm nguyên thuộc đoạn [−10; 10]? A 10 B 21 C D Câu 16 Cho khối nón có đỉnh S , chiều cao thể tích Câu 19 Cắt hình nón √ mặt phẳng qua trục ta thiết diện tam giác vng cân có cạnh huyền √ nón √ √ √ a Thể tích khối πa3 πa3 πa3 πa3 A V = B V = C V = D V = Câu 20 Tập xác định hàm số y = (x − 2) A (2; +∞) B [2; +∞) C R D R\{2} √ Câu 21 Cho hình trụ có chiều cao a Trên đường trịn đáy thứ hình trụ lấy hai điểm A, B, đường trịn đáy thứ hai hình trụ lấy hai điểm C, D cho ABCD hình vng mặt phẳng(ABCD) tạo với đáy hình góc 45◦ Thể tích khối trụ cho √ trụ √ √ √ 3 2πa 2πa3 A 2πa3 C 2πa3 · B D Câu 22 Diện tích tam giác có ba đỉnh ba điểm cực trị đồ thị hàm số y = x4 − 2x2 + A B C D 2 Câu 23 Đạo hàm hàm số y = ln(3x + 1) 3 ln A y′ = B y′ = C y′ = D y′ = 3x + 3x + 3x + (3x + 1) Câu 24 Thể tích khối cầu có bán kính 2a A 4πa3 B 32πa3 C 32 πa D πa3 Trang 2/4 Mã đề 001 Câu 25 Tập nghiệm bất phương trình log (2x + 1) ≥ log (x + 2) A (−2; 1] B [1; +∞) C [− ; +∞] D (− ; 1] Câu 26 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A ( ; 2] [22; +∞) B [22; +∞) C ( ; +∞) D [ ; 2] [22; +∞) 4 Câu 27 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 52 C yCD = 36 D yCD = Câu 28 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = C f (−1) = −5 D f (−1) = −3 a3 Câu 29 Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 300 B 1350 C 450 D 600 Câu 30 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 = B = C = D = A V2 V2 V2 V2 √ Câu 31 Đạo hàm hàm số y = log 3x − là: 6 A y′ = B y′ = C y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 32 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : y+2 z x−1 = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − 2y − = B (P) : x − y − 2z = C (P) : x + y + 2z = D (P) : x − y + 2z = Câu 33 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số đồng biến khoảng (−3; 1) B Hàm số nghịch biến khoảng (−∞; −3) C Hàm số nghịch biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (1; +∞) Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = 26 B P = 34 + C P = + D P = Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 85 97 A T = B T = 13 C T = D T = 13 3 Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B C √ D 2 Trang 3/4 Mã đề 001 √ Giá trị lớn biểu thức √ √ 10 = D Pmax = Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? A Pmax = B Pmax = C Pmax z+1 số ảo Tìm |z| ? Câu 38 Cho số phức z , thỏa mãn z−1 A |z| = B |z| = C |z| = D |z| = 2 Câu 39 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q B điểm R bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm S D điểm P Câu 40 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i C |w|min = D |w|min = A |w|min = B |w|min = 2 Câu 41 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D Câu 42 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 21008 B 22016 C −22016 D −21008 Câu 43 Tìm đạo hàm hàm số: y = (x + 1) 1 1 − 3 A x B (x + 1) C 3x(x2 + 1) D (2x) 2 Câu 44 Trong số phức z thỏa mãn z − i = z¯ − − 3i Hãy tìm z có mơđun nhỏ 6 27 27 − i C z = − − i D z = − + i 5 5 5 x−1 y+2 z = = không qua điểm đây? Câu 45 Đường thẳng (∆) : −1 A (3; −1; −1) B A(−1; 2; 0) C (1; −2; 0) D (−1; −3; 1) A z = 27 + i 5 B z = Câu 46 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A x = −2 B x = C M(1; −2) D M(−2; −4) Câu 47 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(−1; 2; −3); R = B I(1; 2; −3); R = C I(1; 2; 3); R = D I(1; −2; 3); R = Câu 48 Đồ thị hàm số y = x3 − 3x2 − 2x cắt trục hoành điểm? A B C D 3 Câu 49 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m < B m > C −1 ≤ m ≤ D m < −1 Câu 50 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; −3; 4) −n = (−2; 3; 1) −n = (2; 3; −4) −n = (−2; 3; 4) A → B → C → D → - - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 001