Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| =[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B π C 4π D 2π Câu Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 5)2 + (y − 4)2 = 125 B x = 2 C (x + 1) + (y − 2) = 125 D (x − 1)2 + (y − 4)2 = 125 √ Câu (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 3 A |z| > B |z| < C < |z| < D ≤ |z| ≤ 2 2 Câu Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ tam giác MNP √ số phức k √ z1 , z2 số phức w√ = x + iy mặt phẳng phức Để B w = + √27i hoặcw = − √ 27i A w = −√ 27 − i hoặcw =√− 27 + i C w = 27 − i hoặcw = 27 + i D w = + 27 hoặcw = − 27 Câu GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 25 15 B S = C S = A S = D S = 1+i z 25 √ Câu (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A π B 4π C 2π D 3π Câu Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 20 B r = C r = 22 D r = Câu Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D Câu 10 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị ngun tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 11 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 11 + B 18 + C 14 D 28 Trang 1/4 Mã đề 001 Câu 12 Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B C D 12 Câu 13 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D 2x + Câu 14 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 1 2 A y = B y = − C y = − D y = 3 3 Câu 15 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = B y′ = C y′ = D y′ = − xln3 x x xln3 Câu 16 Phần ảo số phức z = − 3i A B C −3 D −2 Câu 17 Cắt hình nón √ mặt phẳng qua trục ta thiết diện tam giác vng cân có cạnh huyền √ a Thể tích khối √ nón √ √ 3 πa πa3 πa3 πa A V = B V = C V = D V = √ Câu 18 Cho hình trụ có chiều cao a Trên đường tròn đáy thứ hình trụ lấy hai điểm A, B, đường trịn đáy thứ hai hình trụ lấy hai điểm C, D cho ABCD hình vng mặt phẳng(ABCD) tạo với đáy hình góc 45◦ Thể tích khối trụ cho √ trụ √ √ √ 2πa 2πa3 3 C 2πa · A 2πa B D Câu 19 Kí hiệu S tập tất số nguyên m cho phương trình x +mx+1 = (3 + mx)39x có nghiệm thuộc khoảng (1; 9) Số phần tử S A 12 B 11 C D Câu 20 Cho hàm số f (x) có đạo hàm f ′ (x) = (x2 − 1)(x − 4) với x ∈ R Hàm số g(x) = f (−x) có điểm cực đại? A B C D x−2 Chọn khẳng định đúng: Câu 21 Cho hàm số y = x+1 A Hàm số đồng biến khoảng (−∞; −1) B Hàm số đồng biến R C Hàm số nghịch biến khoảng (−∞; −1) D Hàm số nghịch biến R Câu 22 Cho hình nón có độ dài đường sinh l = 6, bán kính đáy r = Diện tích xung quanh hình nón cho A 12π B 24π C 48π D 36π 3x − Câu 23 Tổng giá trị lớn giá trị nhỏ hàm số f (x) = đoạn [0; 2] x−3 14 16 16 14 A − B C − D 3 3 Câu 24 Nếu hàm số y = f (x) đồng biến khoảng (−1; 2) hàm số y = f (x + 2) đồng biến khoảng khoảng sau đây? A (−2; 4) B (−1; 2) C (−3; 0) D (1; 4) √ √ Câu 25 Cho hình chóp S ABC có đáy tam giác vng A AB = 3, AC = 7, S A = Hai mặt bên (S AB) (S AC) tạo với đáy góc 450 600 Thể tích khối chóp cho Trang 2/4 Mã đề 001 √ √ 7 A B C D 6 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) 1 A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = Câu 27 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 28 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; −3) B Hàm số nghịch biến khoảng (1; +∞) C Hàm số đồng biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (−3; 1) Câu 29 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; −1; 2) C I(1; 1; 2) D I(0; 1; 2) Câu 30 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(0; 2; 3) C A(1; 2; 0) D A(0; 0; 3) Câu 31 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − 12 4m2 − m2 − B C D A 2m 2m m 2m Câu 32 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B −1 C π D √ d = 1200 Gọi Câu 33 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I trung điểm cạnh √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ CC1 , BB1 Tính khoảng √ a a a 15 C D A a 15 B 3 √ Câu 34 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 1 B ≤ |z| ≤ C |z| > D |z| < A < |z| < 2 2 Câu 35 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 36 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2 √ Câu 37 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B a + b + c 2 C a + b + c − ab − bc − ca D Câu 38 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 22016 B −22016 C −21008 D 21008 Câu 39 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Trang 3/4 Mã đề 001 √ điểm A hình vẽ bên điểm Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm N C điểm M D điểm Q Câu 41 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = 2016 B P = C P = −2016 D max T = √ 2 Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = 2 B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 43 Cho hình phẳng D giới hạn đường y = (x − 2)2 , y = 0, x = 0, x = Khối tròn xoay tạo thành quay D quạnh trục hồnh tích V bao nhiêu? 32 32π 32 B V = 32π C V = D V = A V = 5 5π x−1 y+2 z Câu 44 Đường thẳng (∆) : = = không qua điểm đây? −1 A A(−1; 2; 0) B (3; −1; −1) C (1; −2; 0) D (−1; −3; 1) Câu R45 Tìm nguyên hàm hàm số f (x) = cos 3x R A cos 3xdx = sin 3x + C B cos 3xdx = sin 3x + C R R sin 3x sin 3x + C D cos 3xdx = + C C cos 3xdx = − 3 −a = (4; −6; 2) Phương Câu 46 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 4ty = −6tz = + 2t B x = + 2ty = −3tz = + t C x = −2 + 2ty = −3tz = + t D x = + 2ty = −3tz = −1 + t Câu 47 Cần chọn người cơng tác từ tổ có 30 người, số cách chọn A 10 B C30 C 330 D A330 Câu 48 Số phức z = − 3i có phần ảo A B 3i C D −3 Câu 49 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 1 209 A B C D 210 21 210 105 Câu 50 Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x B y′ = 2023 x ln x C y′ = 2023 x ln 2023 D y′ = x.2023 x−1 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001