LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho x, y, z ba số thực khác thỏa mãn = = 10 Giá trị biểu thức A = xy + yz + zxbằng? A B C D x y Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 52 C yCD = −z D yCD = 36 Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B π C 2π D 4π Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A Câu Cho hàm số y = x + 3x − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (1; +∞) B Hàm số đồng biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (−∞; −3) D Hàm số nghịch biến khoảng (−3; 1) Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D 2x + 2017 Câu Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2] B [2; +∞) C (1; 2) D (−∞; 2] Câu Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = 2a3 B V = a3 C V = 3a3 D V = 3 R Câu 10 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị [1 + f (x)]dx 26 32 A 10 B C D 3 Câu 11 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 A M( ; ; −1) B M(− ; ; 2) C M(− ; ; −1) D M(− ; ; −1) 4 4 Trang 1/5 Mã đề 001 Câu 12 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 − π2 + 16π − 16 π2 + 15π C D 16 16 16 x−1 y+2 z Câu 13 Đường thẳng (∆) : = = không qua điểm đây? −1 A A(−1; 2; 0) B (−1; −3; 1) C (1; −2; 0) D (3; −1; −1) −a = (4; −6; 2) Phương Câu 14 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t B x = −2 + 4ty = −6tz = + 2t C x = + 2ty = −3tz = −1 + t D x = + 2ty = −3tz = + t A π2 + 16π − 16 π R4 B Câu 15 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng ′ ′ ′ 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A BC √ 3 √ a 2a C V = 3a3 D V = B V = A V = a3 3 3 Câu 16 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m > B m < −1 C −1 ≤ m ≤ D −1 ≤ m < Câu 17 Tập nghiệm bất phương trình log(x − 2) > A (12; +∞) B (3; +∞) C (2; 3) D (−∞; 3) Câu 18 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; −2; −3) B (−1; 2; 3) C (1; −2; 3) D (1; 2; −3) Câu 19 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 2) B (0; 1) C (1; 0) D (−1; 2) Câu 20 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln a B ln 23 C ln 6a2 D ln 32 Câu 21 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 225 B 30 C 105 D 210 Câu 22 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C 83 D R Câu 23 Cho x dx = F(x) + C Khẳng định đúng? A F ′ (x) = − x12 B F ′ (x) = x22 C F ′ (x) = 1x D F ′ (x) = ln x Câu 24 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 = y−1 = 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A 11 B C D 13 z−1 −3 Gọi (P) mặt Câu 25 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A 34 B 12 C 41 D 52 Câu 26 Cho số phức z = + 9i, phần thực số phức z2 A −77 B C 85 D 36 Trang 2/5 Mã đề 001 Câu 27 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A B −3 C −2 D Câu 28 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n1 = (−1; 1; 1) B → n4 = (1; 1; −1) C → n3 = (1; 1; 1) D → n2 = (1; −1; 1) R4 R4 R4 Câu 29 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C −1 D Câu 30 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D Câu 31 Tập nghiệm bất phương trình log(x − 2) > A (2; 3) B (−∞; 3) C (3; +∞) D (12; +∞) Câu 32 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; 6) B (7; −6) C (6; 7) D (−6; 7) Câu 33 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A B C 12 D 11 Câu 34 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Một đường thẳng B Parabol C Đường tròn D Hai đường thẳng Câu 35 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 2π B 4π C π D 3π Câu 36 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x − y + = C x + y − = D x + y − = z−z =2? Câu 37 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường tròn B Một đường thẳng C Một Parabol D Một Elip Câu 38 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w = số phức k √ x + iy mặt phẳng phức.√Để tam giác MNP √ A w = 1√+ 27i hoặcw =√1 − 27i B w = − 27 27 + i √ − i hoặcw = − √ C w = 27 − i hoặcw = 27 + i D w = + 27 hoặcw = − 27 Câu 39 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B √ C √ D 13 −2 − 3i Câu 40 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 41 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 4π B π C 2π D 3π Trang 3/5 Mã đề 001 Câu 42 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A Câu 43 Biết B π R2 C D 10 C D sin 2xdx = ea Khi giá trị a là: A − ln B ln Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 45 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D 2 Câu 46 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 3a 3a 30 B C D A 10 d Câu 47 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C a D 2a Câu 48 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a < a x > ay ⇔ x < y C Nếu a > a x = ay ⇔ x = y D Nếu a > a x > ay ⇔ x < y Câu 49 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 50 Trong khơng gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001