LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Biết ∫ f (u)du = F(u) +C Mệnh đề nào dưới đây đúng? A ∫ f (2x − 1)dx = 1 2 F(2x −[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(2x − 1) + C √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A ( ; +∞) B (0; 1) C (0; ) D (1; +∞) 4 Câu Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 R Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B − C D 6 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 2π C 4π D 3π √ sin 2x Câu Giá trị lớn hàm số y = ( π) R bằng? √ A π B C π D Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(0; 1; −2) C I(1; 1; 2) D I(0; −1; 2) Câu Biết R3 f (x)dx = A −2 R3 g(x)dx = Khi R3 [ f (x) + g(x)]dx C D Câu 10 Trong số phức z thỏa mãn z − i = z¯ − − 3i Hãy tìm z có mơđun nhỏ A z = B − i 5 27 B z = − − i 5 C z = 27 + i 5 27 D z = − + i 5 Câu 11 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 A B −16 C D 16 Câu 12 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (−∞; −2) B (2; +∞) C (0; 2) D (−2; 0) Trang 1/5 Mã đề 001 −a = (4; −6; 2) Phương Câu 13 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t B x = + 2ty = −3tz = −1 + t C x = + 2ty = −3tz = + t D x = −2 + 4ty = −6tz = + 2t Câu 14 Thể tích khối lập phương có cạnh 3a là: A 3a3 B 8a3 C 27a3 D 2a3 √ Câu √ 15 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ A d = a B d = 2a C d = a D d = a Câu 16 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m > B −1 ≤ m ≤ C m < −1 D −1 ≤ m < Câu 17 Có cặp số nguyên (x; y) thỏa mãn log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ? A 90 B 48 C 49 D 89 Câu 18 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 2a3 B 22 a3 C 42 a3 D 62 a3 Câu 19 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln 6a2 B ln 23 D ln 32 C ln a Câu 20 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox A 16π B 16 C 16π D 169 15 15 Câu 21 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ B 2a D 22 a A a C 33 a Câu 22 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 30◦ B 45◦ C 90◦ D 60◦ R Câu 23 Cho 1x dx = F(x) + C Khẳng định đúng? D F ′ (x) = − x12 A F ′ (x) = ln x B F ′ (x) = 1x C F ′ (x) = x22 Câu 24 Trong không gian Oxyz, cho đường thẳng d : x−1 = y−2 = −1 A N(2; 1; 2) B M(2; −1; −2) C P(1; 2; 3) z+3 −2 Điểm thuộc d? D Q(1; 2; −3) Câu 25 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (2; 4; 6) C (−1; −2; −3) D (−2; −4; −6) Câu 26 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Trang 2/5 Mã đề 001 R dx = F(x) + C Khẳng định đúng? x A F ′ (x) = − B F ′ (x) = C F ′ (x) = D F ′ (x) = lnx x x x Câu 28 Cho hàm số y = ax + bx + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 0) C (−1; 2) D (1; 2) Câu 27 Cho Câu 29 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; 6) B (7; −6) C (−6; 7) D (6; 7) Câu 30 Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (−∞; 3) C (2; 3) D (12; +∞) x−2 y−1 z−1 Câu 31 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 R2 R2 Câu 32 Nếu f (x) = [ f (x) − 2] A B −2 C D Câu 33 Phần ảo số phức z = − 3i A −2 B C D −3 −2 − 3i Câu 34 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 35 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w = √ x + iy mặt phẳng phức √ Để tam giác MNP √ số phức k B w = √ 27 − i hoặcw = 27√+ i A w = + √27i hoặcw = − √ 27i C w = + 27 hoặcw = − 27 D w = − 27 − i hoặcw = − 27 + i z+i+1 Câu 36 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một Elip B Một đường tròn C Một đường thẳng D Một Parabol √ Câu 37 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 38 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = 10 D max T = Câu 39 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B 4π C π D 2π Câu 40 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B C D −1 Câu 41 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 20 B r = 22 C r = D r = √ Câu 42 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 10 B |z| = 33 C |z| = 50 D |z| = Trang 3/5 Mã đề 001 d Câu 43 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B 2a C a D a Câu 44 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x > ay ⇔ x < y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x = ay ⇔ x = y Câu 45 Hàm số hàm số sau đồng biến R 4x + x+2 C y = x3 + 3x2 + 6x − A y = B y = x4 + 3x2 D y = −x3 − x2 − 5x Câu 46 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = 14 B R = C R = D R = 15 Câu 47 Chọn mệnh đề mệnh đề sau: A R3 |x2 − 2x|dx = − B R3 R3 R3 R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx D (x2 − 2x)dx + 1 C R2 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx 1 Câu 48 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 17 πa2 17 πa2 15 B C D A Câu 49 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 3a 3a 30 A B C D 2 10 Câu 50 Hàm số hàm số sau có đồ thị hình vẽ bên A y = x3 − 3x2 B y = −x4 + 2x2 C y = −x4 + 2x2 + D y = −2x4 + 4x2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001