LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = x− √ 2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ th[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận B Có tiệm cận ngang tiệm cận đứng C Khơng có tiệm cận ngang có tiệm cận đứng D Có tiệm cận ngang khơng có tiệm cận đứng Câu Biết R5 A T = dx = ln T Giá trị T là: 2x − B T = 81 C T = √ D T = 3 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 2 2 2 C (S ) : (x − 2) + (y − 1) + (z + 1) = D (S ) : (x + 2) + (y + 1) + (z − 1) = a3 Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 1350 B 450 C 600 D 300 Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B C π D −1 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = 2x + 2017 Câu Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = C Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng Câu Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : y+2 z x−1 = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y + 2z = B (P) : x + y + 2z = C (P) : x − 2y − = D (P) : x − y − 2z = Câu Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx A B 26 C 32 D 10 Trang 1/5 Mã đề 001 √ Câu √ 10 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ C d = a D d = 2a A d = a B d = a Câu 11 Biết phương trình log22 x − 7log2 x + = có nghiệm x1 , x2 Giá trị x1 x2 A 64 B 512 C 128 D y z−2 x+1 = = Viết Câu 12 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : x − 2y + = B (P) : x − 2z + = C (P) : y − z + = D (P) : y + z − = Câu 13 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m > B m < −1 C −1 ≤ m ≤ D −1 ≤ m < Câu 14 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 1 209 A B C D 105 210 21 210 Câu 15 Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 − 5x + m) > log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = (−∞; 4) B S = (−∞; 5] C S = [6; +∞) D S = (7; +∞) z x−1 y+2 = = không qua điểm đây? Câu 16 Đường thẳng (∆) : −1 A (−1; −3; 1) B (3; −1; −1) C A(−1; 2; 0) D (1; −2; 0) Câu 17 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−∞; 1) C (2; +∞) D (1; 2) R4 R4 R4 Câu 18 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A −1 B C D Câu 19 Tập nghiệm bất phương trình log(x − 2) > A (12; +∞) B (3; +∞) C (2; 3) Câu 20 Có số nguyên x thỏa mãn A 184 B 92 −16 log3 x343 D (−∞; 3) −16 log7 x 27 ? < C 193 D 186 Câu 21 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A 23 B C 43 D Câu 22 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 23 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A 34 B 52 C 41 D 12 Câu 24 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 = y−1 = 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A 31 B 11 C D z−1 −3 Gọi (P) mặt Câu R25 Cho hàm số f (x) = cos x + x Khẳng định nàoR đúng? A f (x)dx = − sin x + x2 + C B f (x)dx = − sin x + x2 + C R R C f (x)dx = sin x + x2 + C D f (x)dx = sin x + x2 + C Trang 2/5 Mã đề 001 Câu 26 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (2; +∞) B (1; 2) C (1; +∞) D (−∞; 1) R dx = F(x) + C Khẳng định đúng? Câu 27 Cho x 1 A F ′ (x) = − B F ′ (x) = lnx C F ′ (x) = D F ′ (x) = x x x Câu 28 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường tròn Tâm đường tròn có tọa độ A (2; 0) B (−2; 0) C (0; 2) D (0; −2) Câu 29 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B C D A 35 35 35 Câu 30 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16π 16 16 A B C D 15 15 Câu 31 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 28 B 14 C 18 + D 11 + Câu 32 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A B 15 C 17 D Câu 33 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị ngun tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 34 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 trên√mặt phẳng phức Khi đó√ độ dài MN B MN = C MN = D MN = A MN = Câu 35 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x + 1)2 + (y − 2)2 = 125 B x = 2 C (x − 1) + (y − 4) = 125 D (x − 5)2 + (y − 4)2 = 125 z+i+1 Câu 36 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một đường tròn B Một đường thẳng C Một Parabol D Một Elip Câu 37 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn số phức k √ z1 , z2 số phức √ w = x + iy mặt phẳng phức.√Để tam giác MNP √ A w = 27√− i hoặcw = 27 +√i B w = − 27 − i hoặcw = − 27 + i √ √ C w = + 27i hoặcw = − 27i D w = + 27 hoặcw = − 27 Câu 38 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 Trang 3/5 Mã đề 001 Câu 39 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x + y − = D x − y + = Câu 40 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Parabol B Đường tròn C Một đường thẳng D Hai đường thẳng Câu 41 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 15 15 A S = B S = C S = D S = 1+i z 25 Câu 42 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = D P = A P = 2 √ Câu 43 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình với x ∈ (4; +∞) D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Câu 44 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 27 29 23 25 B C D A 4 4 Câu 45 Chọn mệnh đề mệnh đề sau: R R e2x + C B sin xdx = cos x + C A e2x dx = R R (2x + 1)3 C (2x + 1) dx = +C D x dx =5 x + C Câu 46 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 3 x2 + mx + đạt cực tiểu điểm x = x+1 C m = −1 D Khơng có m Câu 47 Tìm tất giá trị tham số m để hàm số y = A m = B m = Câu 48 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 49 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = πRl + 2πR2 C S = πRl + πR2 D S = 2πRl + 2πR2 Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ 3a 3a 3a 30 a 15 A B C D 10 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001