LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20 A yCD = 4 B yCD = 52 C yCD =[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm giá trị cực đại yCD hàm số y = x − 12x + 20 A yCD = B yCD = 52 C yCD = −2 D yCD = 36 Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền 2a Tính thể tích√của khối nón √ 4π 2.a3 π.a3 π 2.a3 2π.a3 B C D A 3 3 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln B ln − C ln + D − ln − 2 2 ′ Câu Cho hình trụ có hai đáy hai đường tròn (O; r) (O ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A B D = = C = = V2 V2 V2 V2 Câu Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab) = ln a ln b B ln( ) = b ln b C ln(ab2 ) = ln a + (ln b)2 D ln(ab2 ) = ln a + ln b Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B −1 C π D Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 D [ ; 2] [22; +∞) A [22; +∞) B ( ; 2] [22; +∞) C ( ; +∞) 4 x+1 y z−2 Câu Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : = = Viết 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : y + z − = B (P) : x − 2z + = C (P) : y − z + = D (P) : x − 2y + = Câu 10 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (0; 1) C (−1; 0) D (1; +∞) Câu 11 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B 2i C −4 D Câu 12 Tâm I bán kính R mặt cầu (S ) : (x − 1) + (y + 2) + (z − 3) = là: A I(−1; 2; −3); R = B I(1; 2; 3); R = C I(1; −2; 3); R = D I(1; 2; −3); R = 2 Trang 1/5 Mã đề 001 Câu 13 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C − log5 a D + log5 a Câu 14 Cho hình phẳng D giới hạn đường y = (x − 2)2 , y = 0, x = 0, x = Khối tròn xoay tạo thành quay D quạnh trục hồnh tích V bao nhiêu? 32 32π 32 A V = B V = C V = D V = 32π 5 5π x+1 Câu 15 Đồ thị hàm số y = (C) có đường tiệm cận x−2 A y = x = B y = x = C y = x = −1 D y = −1 x = Câu 16 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = a3 B V = 3a3 C V = D V = 2a3 Câu 17 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ B y′ = πxπ−1 C y′ = π1 xπ−1 D y′ = xπ−1 R4 R4 R4 Câu 18 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B −1 C D Câu 19 Tích tất nghiệm phương trình ln2 x + ln x − = A e12 B −3 C −2 D e3 Câu 20 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ B 2a C 22 a D 3 a A a Câu 21 Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ |z| Giá trị M + m2√bằng A 28 B 11 + C 14 √ D 18 + Câu 22 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx B C 43 D A 23 Câu 23 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (−2; −4; −6) C (2; 4; 6) D (−1; −2; −3) Câu 24 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A 2πrl B πrl C 32 πrl2 D 31 πr2 l Câu 25 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường trịn Tâm đường trịn có tọa độ A (0; −2) B (0; 2) C (2; 0) D (−2; 0) Câu 26 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A B 15 C D 17 Câu 27 Cho số phức z = + 9i, phần thực số phức z2 A 85 B 36 C −77 D Câu 28 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 3 A a B a C a D 2a 3 Trang 2/5 Mã đề 001 Câu 29 Tập nghiệm bất phương trình log(x − 2) > A (2; 3) B (−∞; 3) C (12; +∞) D (3; +∞) 2x + Câu 30 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 2 B y = − C y = D y = A y = − 3 3 Câu 31 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: ln3 1 B y′ = C y′ = D y′ = − A y′ = xln3 x x xln3 R Câu 32 Cho dx = F(x) + C Khẳng định đúng? x 1 B F ′ (x) = C F ′ (x) = − D F ′ (x) = lnx A F ′ (x) = x x x x−2 y−1 z−1 Câu 33 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 B C D A 3 √ Câu 34 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 35 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π D A 5π B 25π C √ Câu 36 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 50 B |z| = 10 C |z| = 33 D |z| = Câu 37 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 √ √ mặt phẳng phức Khi độ dài MN B MN = C MN = D MN = A MN = Câu 38 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Đường tròn B Một đường thẳng C Parabol D Hai đường thẳng √ Câu 39 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 B |z| > C < |z| < D |z| < A ≤ |z| ≤ 2 2 Câu 40 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A −1 B C D Câu 41 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 20 B r = 22 C r = D r = Câu 42 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 ′ ′ ′ Câu 43 Cho hình lăng trụ đứng ABC.A B C có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 6a C 3a D 9a3 A 4a Trang 3/5 Mã đề 001 Câu 44 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n A log2 2250 = 2mn + n + n B log2 2250 = 3mn + n + n C log2 2250 = 2mn + n + n D log2 2250 = 2mn + 2n + m Câu 45 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng C 36080253 đồng B 36080251 đồng D 36080255 đồng Câu 46 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 250π 400π 500π 125π A B C D 9 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C −4 D Câu 48 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m > 1 C m > m < − D m < −2 Câu 49 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 32π B 33π C 6π D 31π Câu 50 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −2x4 + 4x2 B y = −x4 + 2x2 + C y = −x4 + 2x2 D y = x3 − 3x2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001