LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình t[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 A (m ) B (m2 ) C (m ) D 3(m2 ) Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B π C 4π D 2π Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 C ( ; 2] [22; +∞) D [ ; 2] [22; +∞) A [22; +∞) B ( ; +∞) 4 R Câu Tính nguyên hàm cos 3xdx 1 A sin 3x + C B − sin 3x + C C sin 3x + C D −3 sin 3x + C 3 y+2 z x−1 = = Viết phương Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y − 2z = B (P) : x − y + 2z = C (P) : x + y + 2z = D (P) : x − 2y − = Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C − D 6 Câu Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 −5x+m) > log3 (x−2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = (7; +∞) B S = (−∞; 5] C S = (−∞; 4) D S = [6; +∞) Câu 10 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −5 B S = C S = −6 D S = Câu 11 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng ′ ′ ′ 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A BC √ 3 √ 2a a A V = a3 B V = C V = 3a3 D V = 3 x−1 y+2 z Câu 12 Đường thẳng (∆) : = = không qua điểm đây? −1 A A(−1; 2; 0) B (1; −2; 0) C (−1; −3; 1) D (3; −1; −1) Trang 1/5 Mã đề 001 Câu 13 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 1) −n = (−2; 3; 4) −n = (2; 3; −4) −n = (2; −3; 4) A → B → C → D → Câu 14 Đồ thị hàm số y = x3 − 3x2 − 2x cắt trục hoành điểm? A B C D Câu 15 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(5; 2) B M(−5; −2) C M(5; −2) D M(−2; 5) Câu 16 Cho cấp số nhân (un ) với u1 = − ; u7 = −32 Tìm q? A q = ±4 B q = ±2 C q = ±1 D q = ± Câu 17 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 30◦ B 45◦ C 90◦ D 60◦ Câu 18 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C −1 D R4 R4 R4 Câu 19 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B C −1 D Câu 20 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (1; 2) C (0; 1) D (−1; 2) Câu 21 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (2; +∞) B (−∞; 1) C (1; 2) D (1; +∞) Câu 22 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) B 43 C 25 D 12 A 41 Câu 23 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: B y′ = lnx3 C y′ = − x ln1 A y′ = 1x D y′ = x ln Câu 24 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 25 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (6; 7) C (7; −6) D (7; 6) Câu 26 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A B C 12 D 11 Câu 27 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị ngun tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 28 Với a số thực dương tùy ý, ln(3a) − ln(2a) D ln A ln(6a2 ) B lna C ln 2 Câu 29 Trên tập hợp số phức, xét phương trình z − 2(m + 1)z + m = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Trang 2/5 Mã đề 001 Câu 30 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = sinx + + C B f (x) = −sinx + x2 + C R R x2 C f (x) = sinx + x2 + C D f (x) = −sinx + + C Câu 31 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 D A B C Câu 32 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (2; +∞) C (1; +∞) D (1; 2) Câu 33 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (2; 3) B (6; 7) C (4; 5) D (3; 4) √ Câu 34 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 A |z| > B ≤ |z| ≤ C |z| < D < |z| < 2 2 z+i+1 số ảo? Câu 35 Tìm tập hợp điểm M biểu diễn số phức z cho w = z + z + 2i A Một đường thẳng B Một Parabol C Một Elip D Một đường tròn Câu 36 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x + 1)2 + (y − 2)2 = 125 B x = 2 C (x − 5) + (y − 4) = 125 D (x − 1)2 + (y − 4)2 = 125 Câu 37 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = D max T = 10 Câu 38 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn số phức k √ z1 , z2 số phức √ w = x + iy mặt phẳng phức.√Để tam giác MNP √ A w = 27√− i hoặcw = 27 +√i B w = − 27 27 + i √ − i hoặcw = − √ C w = + 27i hoặcw = − 27i D w = + 27 hoặcw = − 27 Câu 39 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = 1+i z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 25 25 15 A S = B S = C S = D S = 4 2 Câu 40 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 41 Cho số phức z thoả mãn (1 + z) số thực Tập hợp điểm M biểu diễn số phức z A Parabol B Hai đường thẳng C Đường tròn D Một đường thẳng −2 − 3i Câu 42 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Trang 3/5 Mã đề 001 Câu 43 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 32π B 6π C r Câu 44 Tìm tập xác định D hàm số y = log2 33π D 31π 3x + x−1 A D = (1; +∞) B D = (−1; 4) ———————————————– C D = (−∞; −1] ∪ (1; +∞) D D = (−∞; 0) Câu 45 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 30 3a 3a a 15 B C D A 10 Câu 46 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B −4 ≤ m ≤ −1 C −3 ≤ m ≤ D m > −2 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −4 C −2 D Câu 48 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −2x4 + 4x2 B y = −x4 + 2x2 C y = x3 − 3x2 D y = −x4 + 2x2 + Câu 49 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 50 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a > a x > ay ⇔ x > y C Nếu a > a x = ay ⇔ x = y D Nếu a < a x > ay ⇔ x < y Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001