LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các khoảng đồng biến của hàm số y = x − 2 √ x + 2017 A (1;+∞) B (0; 1[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (1; +∞) B (0; ) C (0; 1) D ( ; +∞) 4 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = C yCD = 52 D yCD = −2 Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + 2x2 + B y = −x4 + C y = x4 + D y = x4 + 2x2 + Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ C m ≥ −1 D m > Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A ( ; +∞) B ( ; 2] [22; +∞) C [22; +∞) D [ ; 2] [22; +∞) 4 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 2 2 2 C (S ) : (x − 2) + (y − 1) + (z + 1) = D (S ) : (x + 2) + (y + 1) + (z − 1) = 3 √ x Câu Tìm nghiệm phương trình x = ( 3) A x = B x = C x = −1 D x = z x−1 y+2 Câu Đường thẳng (∆) : = = không qua điểm đây? −1 A (−1; −3; 1) B (1; −2; 0) C A(−1; 2; 0) D (3; −1; −1) Câu 10 Biết R3 A f (x)dx = R3 g(x)dx = Khi B −2 Câu 11 Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x B y′ = 2023 x ln 2023 R3 [ f (x) + g(x)]dx C D C y′ = 2023 x ln x D y′ = x.2023 x−1 Câu 12 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; 3; −4) −n = (−2; 3; 1) −n = (2; −3; 4) −n = (−2; 3; 4) A → B → C → D → Câu 13 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A′ B′C ′ √ √ a3 2a3 A V = 3a3 B V = C V = D V = a3 3 Trang 1/5 Mã đề 001 Câu 14 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 B M(− ; ; −1) C M(− ; ; 2) D M(− ; ; −1) A M( ; ; −1) 4 4 Câu 15 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ A 5πa2 B 2πa2 C 6πa2 D 4πa2 Câu 16 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −5 B S = C S = −6 D S = Câu 17 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (7; 6) C (7; −6) D (6; 7) Câu 18 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πrl B 13 πr2 l C 32 πrl2 D 2πrl 2 −16 −16 Câu 19 Có số nguyên x thỏa mãn log3 x343 < log7 x 27 ? A 186 B 184 C 92 D 193 R Câu 20 Cho x dx = F(x) + C Khẳng định đúng? B F ′ (x) = x22 C F ′ (x) = ln x D F ′ (x) = − x12 A F ′ (x) = 1x R4 R4 R4 Câu 21 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B C D −1 Câu 22 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: C y′ = πxπ−1 A y′ = xπ−1 B y′ = π1 xπ−1 D y′ = πxπ Câu 23 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (−1; 2) C (1; 0) D (1; 2) i R2 R h1 Câu 24 Nếu f (x)dx = f (x) − dx A B C −2 D Câu 25 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (3; 4) B (6; 7) C (4; 5) D (2; 3) Câu 26 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (−1; 2) B (1; 2) C (1; 0) D (0; 1) Câu 27 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πrl B 2πrl C πrl2 D πr2 l 3 R Câu 28 Cho dx = F(x) + C Khẳng định đúng? x A F ′ (x) = − B F ′ (x) = C F ′ (x) = lnx D F ′ (x) = x x x Câu 29 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (2; 0) B (0; 2) C (0; −2) D (−2; 0) Trang 2/5 Mã đề 001 Câu 30 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 A B C D 35 35 35 Câu 31 Phần ảo số phức z = − 3i A B C −2 D −3 Câu 32 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A B C −2 D −3 Câu 33 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A 11 B C 12 D Câu 34 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu số ảo mệnh đề sau đúng? A Tam giác OAB tam giác vuông C Tam giác OAB tam giác z w B Tam giác OAB tam giác cân D Tam giác OAB tam giác nhọn Câu 35 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 Câu 36 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A π B 2π C 4π D 3π 1+i z Câu 37 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = ′ mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM 25 25 15 15 A S = B S = C S = D S = 2 z−z =2? Câu 38 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một Parabol B Một Elip C Một đường tròn D Một đường thẳng Câu 39 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Một đường thẳng B Parabol C Hai đường thẳng D Đường trịn −2 − 3i Câu 40 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ B max |z| = C max |z| = D max |z| = A max |z| = Câu 41 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức √ w = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = √ 27 − i hoặcw = 27√+ i B w = + √27 hoặcw = − √27 C w = − 27 − i hoặcw = − 27 + i D w = + 27i hoặcw = − 27i √ Câu 42 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 43 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A 128 B 32 C 64 x2 )=8 D Trang 3/5 Mã đề 001 Câu 44 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 29 B 25 C 27 D 23 Câu 45 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ 125π B √ 250π A Câu 46 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( √ 500π C √ 400π D ax + b 2x )e + C Khi giá trị a + b là: B C D Câu 47 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e Câu 48 Biết π R2 B P = ln a C P = D P = + 2(ln a)2 C D ln sin 2xdx = ea Khi giá trị a là: A − ln B Câu 49 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = x+cos3x ln Câu 50 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 31π B 32π C 33π D 6π Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001