LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số f (x) thỏa mãn f ′′(x) = 12x2 + 6x − 4 và f (0) = 1, f (1) = 3 Tính f[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = −1 C f (−1) = −3 D f (−1) = Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu Cho a > a , Giá trị alog A B √ a bằng? C D √ Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B ln − C ln + D − ln A − ln − 2 2 x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − y + 2z = C (P) : x − 2y − = D (P) : x − y − 2z = √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a A a B C D 2 Câu Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B C −4 D 2i Câu 10 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (0; 1) B (−∞; 1) C (−1; 0) D (1; +∞) Câu 11 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A B Vô số C D R Câu 12 6x5 dxbằng A x6 + C B x6 + C C 6x6 + C D 30x4 + C x+1 Câu 13 Đồ thị hàm số y = (C) có đường tiệm cận x−2 A y = x = B y = x = C y = −1 x = D y = x = −1 Trang 1/5 Mã đề 001 Câu 14 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 364 B S = 1979 C S = 96 D S = 84 √ Câu 15 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ B d = a C d = 2a D d = a A d = a Câu 16 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x A cos 3xdx = sin 3x + C B cos 3xdx = − + C R R sin 3x C cos 3xdx = sin 3x + C D cos 3xdx = + C Câu 17 Cho cấp số nhân (un ) với u1 = công bội q = 21 Giá trị u3 A 12 B 14 C D 27 Câu 18 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu 19 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d < R C d = R D d = Câu 20 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 B 16π C 16 D 15 A 16π 15 9 Câu 21 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (6; 7) B (7; −6) C (−6; 7) D (7; 6) Câu 22 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln a B ln 23 C ln 6a2 D ln 32 Câu 23 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (2; +∞) C (−∞; 1) D (1; 2) Câu 24 Tiệm cận ngang đồ thị hàm số y = B y = − 13 A y = − 32 2x+1 3x−1 đường thẳng có phương trình: C y = 13 D y = 23 Câu 25 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường trịn Tâm đường trịn có tọa độ A (2; 0) B (0; −2) C (−2; 0) D (0; 2) Câu 26 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (4; 5) B (3; 4) C (2; 3) D (6; 7) 800π Câu 27 Cho khối nón có đỉnh S , chiều cao thể tích Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 Câu 28 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (3; +∞) B (0; 2) C (1; 3) D (−∞; 1) Trang 2/5 Mã đề 001 Câu 29 Nếu A R2 R2 f (x) = [ f (x) − 2] B −2 C D Câu 30 Trên tập hợp số phức, xét phương trình z − 2(m + 1)z + m = ( m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B D C Câu 31 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 11 + B 28 C 14 D 18 + 2 Câu 32 Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (12; +∞) C (2; 3) D (−∞; 3) 2 x − 16 x − 16 Câu 33 Có số nguyên x thỏa mãn log3 < log7 ? 343 27 A 186 B 92 C 184 D 193 Câu 34 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ B max T = C max T = 10 D max T = A max T = Câu 35 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi độ dài MN √ √ A MN = B MN = C MN = D MN = Câu 36 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B −1 C D Câu 37 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = C r = 22 D r = 20 Câu 38 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn số phức k √ w = x + iy mặt phẳng phức.√Để tam giác MNP √ √ z1 , z2 số phức + i B w = − 27 A w = 27√− i hoặcw = 27 √ √ − i hoặcw = − 27 √ + i D w = + 27i hoặcw = − 27i C w = + 27 hoặcw = − 27 Câu 39 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B 4π C 2π D π z Câu 40 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác vuông B Tam giác OAB tam giác nhọn C Tam giác OAB tam giác cân D Tam giác OAB tam giác Câu 41 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ B √ C √ D 13 √ Câu 42 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 B |z| > C ≤ |z| ≤ D |z| < A < |z| < 2 2 Trang 3/5 Mã đề 001 Câu 43 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = x3 − 3x2 C y = −x4 + 2x2 + D y = −2x4 + 4x2 Câu 44 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B −3 ≤ m ≤ C −4 ≤ m ≤ −1 D m > −2 Câu 45 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 26abc C P = 2abc D P = 2a+2b+3c Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 Câu 47 Hàm số hàm số sau đồng biến R 4x + x+2 A y = −x3 − x2 − 5x B y = C y = x3 + 3x2 + 6x − D y = x4 + 3x2 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ −u + 3→ −v = (1; 14; 15) A 2→ −u + 3→ −v = (1; 13; 16) B 2→ −u + 3→ −v = (2; 14; 14) C 2→ −u + 3→ −v = (3; 14; 16) D 2→ √ 2x − x2 + Câu 49 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 50 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A 12 B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001