LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) x + y − z − 1 = 0 Viết phư[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 2 C (S ) : (x + 2) + (y + 1) + (z − 1) = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C − D 6 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I (A1 BK) √ trung điểm cạnh√CC1 , BB1 Tính khoảng cách từ điểm I đến mặt phẳng √ √ a a 15 a A B C a 15 D 3 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B a C D Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − 12 m2 − 4m2 − A B C D 2m m 2m 2m Câu Đường cong hình bên đồ thị hàm số nào? A y = x4 + B y = x4 + 2x2 + C y = −x4 + 2x2 + D y = −x4 + Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 8π 32 A V = B V = C V = D V = 5 Câu Cho cấp số nhân (un ) với u1 = − ; u7 = −32 Tìm q? A q = ±1 B q = ±2 C q = ±4 D q = ± Câu 10 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; 2; −3); R = B I(−1; 2; −3); R = C I(1; 2; 3); R = D I(1; −2; 3); R = Câu 11 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 1) −n = (2; −3; 4) −n = (2; 3; −4) −n = (−2; 3; 4) A → B → C → D → Câu 12 Cần chọn người cơng tác từ tổ có 30 người, số cách chọn A A330 B 330 C C30 D 10 Trang 1/5 Mã đề 001 √ Câu 13 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: A (x + 4)2 + (y − 8)2 = 20 √ C (x + 4)2 + (y − 8)2 = √ B (x − 4)2 + (y + 8)2 = D (x − 4)2 + (y + 8)2 = 20 Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A 3x − 4y + 6z + 34 = B x − 2y − 2z − = C x + 2y + 2z + = D −x + 2y + 2z + = Câu 15 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 D A −16 B C 16 Câu 16 Số phức z = − 3i có phần ảo A B C −3 D 3i Câu 17 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu 18 Tập nghiệm bất phương trình x+1 < A (1; +∞) B (−∞; 1) C (−∞; 1] D [1; +∞) Câu 19 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B 35 C 354 D 35 A 17 Câu 20 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B 12 C D Câu 21 Phần ảo số phức z = − 3i A B −3 C −2 D Câu 22 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (0; 2) C (−∞; 1) D (3; +∞) Câu 23 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu 24 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (1; 2) C (2; +∞) D (1; +∞) Câu 25 Với a số thực dương tùy ý, ln(3a) − ln(2a) B ln 6a2 C ln a A ln 32 D ln 23 Câu 26 Tập nghiệm bất phương trình x+1 < A (−∞; 1] B (−∞; 1) C [1; +∞) D (1; +∞) π Câu 27 Trên khoảng (0; +∞), đạo hàm hàm số y = x là: A y′ = xπ−1 B y′ = πxπ−1 C y′ = xπ−1 π Câu 28 Cho số phức z = + 9i, phần thực số phức z A 36 B −77 C D y′ = πxπ D 85 Trang 2/5 Mã đề 001 Câu 29 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A 11 B C D 12 Câu 30 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 31 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A 2πrl B πr2 l C πrl2 D πrl 3 Câu 32 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = B y′ = − C y′ = x xln3 x D y′ = xln3 Câu 33 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (6; 7) C (−6; 7) D (7; 6) Câu 34 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 25 15 A S = B S = C S = 4 D S = 1+i z 15 Câu 35 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B 10 C D Câu 36 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường tròn Tính bán kính r đường trịn A r = 20 B r = C r = D r = 22 √ Câu 37 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 38 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 1)2 + (y − 4)2 = 125 B (x + 1)2 + (y − 2)2 = 125 C x = D (x − 5)2 + (y − 4)2 = 125 Câu 39 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 4π B 2π C π D 3π Câu 40 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w √= x + iy mặt phẳng phức.√Để tam giác MNP √ số phức k A w = + √27 hoặcw = − √27 B w = −√ 27 − i hoặcw =√− 27 + i C w = + 27i hoặcw = − 27i D w = 27 − i hoặcw = 27 + i Câu 41 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = 10 C max T = D max T = Câu 42 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A 25π B C 5π D Trang 3/5 Mã đề 001 Câu 43 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −16 C m = m = −10 D m = Câu 44 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 A B C D 16 Câu 45 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A ln + 5 B 3π ln + C ln + cos x π F(− ) = π Khi giá trị sin x + cos x 6π D 6π Câu 46 Chọn mệnh đề mệnh đề sau: A R3 |x − 2x|dx = − B R3 R3 R3 R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx D (x − 2x)dx + 1 C R2 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx 1 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 48 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 9a3 B 3a3 C 4a3 D 6a3 Câu 49 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2abc C P = 2a+b+c D P = 2a+2b+3c Câu 50 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001