LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1 (x + 1)(x + 2)2 ;[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln − B − ln C ln + D − ln − 2 2 2 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x + y + z − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = C f (−1) = −3 D f (−1) = −5 2x + 2017 Câu Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 D Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (1; +∞) B (0; ) C ( ; +∞) D (0; 1) 4 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32 8π 32π A V = B V = C V = D V = 5 ′ Câu Cho hình trụ có hai đáy hai đường tròn (O; r) (O ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 D V = 2a3 A V = a3 B V = 3a3 C V = Câu 10 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm −−→ −−→ −−→ tọa độ điểm M thỏa mãn OM = 2AB − AC A M(−2; 6; −4) B M(−2; −6; 4) C M(5; 5; 0) D M(2; −6; 4) Trang 1/5 Mã đề 001 Câu 11 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −6 B S = C S = −5 D S = Câu 12 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ A 2πa2 B 5πa2 C 6πa2 D 4πa2 Câu 13 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A′ B′C ′ √ √ a3 2a3 A V = a3 B V = C V = D V = 3a3 3 Câu 14 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B −1 ≤ m < C m < −1 D m > x+1 Câu 15 Đồ thị hàm số y = (C) có đường tiệm cận x−2 A y = x = B y = x = C y = x = −1 D y = −1 x = Câu 16 Cho hình phẳng D giới hạn đường y = (x − 2)2 , y = 0, x = 0, x = Khối tròn xoay tạo thành quay D quạnh trục hồnh tích V bao nhiêu? 32π 32 32 B V = C V = 32π D V = A V = 5 5π Câu 17 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 = y−1 = 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) D 31 A B C 11 z−1 −3 Gọi (P) mặt Câu 18 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 19 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C D −1 Câu 20 Trong không gian Oxyz, cho đường thẳng d : x−1 = y−2 = −1 A M(2; −1; −2) B Q(1; 2; −3) C N(2; 1; 2) z+3 −2 Điểm thuộc d? D P(1; 2; 3) Câu 21 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A 2πrl B 32 πrl2 C 31 πr2 l D πrl Câu 22 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A 21 B 52 C 41 D 43 Câu 23 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 105 B 210 C 30 D 225 Câu 24 Tập nghiệm bất phương trình x+1 < A (−∞; 1) B (1; +∞) C (−∞; 1] D [1; +∞) Câu 25 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B C 12 D 2 x − 16 x − 16 Câu 26 Có số nguyên x thỏa mãn log3 < log7 ? 343 27 A 184 B 186 C 92 D 193 Trang 2/5 Mã đề 001 Câu 27 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 3 A a B 2a a D a C Câu 28 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d > R C d = R D d < R Câu 29 Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 30◦ C 60◦ D 90◦ Câu 30 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x = + 2t x=5+t y = −1 + 3t y = + 3t y = −1 + t y = + 2t C D A B z = −1 + t z = −1 + t z = −1 + 3t z = + 3t Câu 31 Với a số thực dương tùy ý, ln(3a) − ln(2a) D ln A lna B ln(6a2 ) C ln Câu 32 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n3 = (1; 1; 1) C → n2 = (1; −1; 1) D → n1 = (−1; 1; 1) ax + b có đồ thị đường cong hình bên Câu 33 Cho hàm số y = cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (2; 0) B (0; 2) C (0; −2) D (−2; 0) Câu 34 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π D A 25π B 5π C Câu 35 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 Câu 36 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Đường tròn B Một đường thẳng C Parabol D Hai đường thẳng Câu 37 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = D max T = 10 Câu 38 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 √ mặt phẳng phức Khi đó√độ dài MN A MN = B MN = C MN = D MN = Câu 39 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 22 B r = C r = 20 D r = √ Câu 40 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A ≤ |z| ≤ B < |z| < C |z| < D |z| > 2 2 √ Câu 41 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Trang 3/5 Mã đề 001 Câu 42 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu z w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác nhọn B Tam giác OAB tam giác C Tam giác OAB tam giác vuông D Tam giác OAB tam giác cân Câu 43 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 44 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C D −2 Câu 45 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a B C D A 3 Câu 46 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 x x +C A dx =5 + C B (2x + 1) dx = R R e2x C e2x dx = + C D sin xdx = cos x + C Câu 47 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = ln a C P = D P = + 2(ln a)2 Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng C 36080255 đồng B 36080254 đồng D 36080251 đồng √ Câu 49 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình vơ nghiệm D Bất phương trình với x ∈ [ 1; 3] Câu 50 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = πRl + πR2 C S = 2πRl + 2πR2 D S = πRh + πR2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001