Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính I = 1∫ 0 3√7x + 1dx A I = 20 7 B I = 21[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính I = R1 √3 7x + 1dx 20 21 45 60 B I = C I = D I = 28 28 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H3) B (H2) C (H4) D (H1) A I = Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? A R = 29 B R = C R = 21 D R = Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 30a3 B 20a3 C 100a3 D 60a3 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 1; 0) B (0; 0; 5) C (0; 5; 0) D (0; −5; 0) Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu C πR3 D πR3 A 4πR3 B πR3 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số nghịch biến (0; +∞) C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số nghịch biến R Câu Cho hình S ABCcó cạnh đáy a cạnh bên√bằng b Thể tích khối chóp là: √ chóp 3ab 3a2 b A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 Câu 10 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 p Câu 11 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux = y = −3 C Nếu < x < y < −3 D Nếux > thìy < −15 ax + b Câu 12 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ab < B ad > C ac < D bc > Trang 1/5 Mã đề 001 Câu 13 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + 2ty = + tz = − 4t B x = + ty = + 2tz = C x = + 2ty = + tz = D x = + 2ty = + tz = Câu 14 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số đồng biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số nghịch biến R Câu 15 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (2; −3; −1) C M ′ (−2; −3; −1) D M ′ (−2; 3; 1) Câu 16 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; −5; 0) C (0; 1; 0) D (0; 0; 5) Câu 17 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m > B m < −1 C −1 ≤ m ≤ D −1 ≤ m < Câu 18 Thể tích khối lập phương có cạnh 3a là: A 8a3 B 27a3 C 2a3 D 3a3 Câu 19 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π , Tính diện tích tam giác ABC lượt hình trịn xoay tích 672π, 13 A S = 1979 B S = 364 C S = 84 D S = 96 Câu 20 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; 2; −3); R = B I(1; 2; 3); R = C I(−1; 2; −3); R = D I(1; −2; 3); R = Câu 21 Đường cong hình bên đồ thị hàm số đây? A y = −x3 + 3x2 + B y = x4 − 2x2 + C y = x3 − 3x2 + D y = −x4 + 2x2 + Câu 22 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số ngun dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 23 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 1) −n = (2; 3; −4) −n = (2; −3; 4) −n = (−2; 3; 4) A → B → C → D → x+1 (C) có đường tiệm cận Câu 24 Đồ thị hàm số y = x−2 A y = −1 x = B y = x = −1 C y = x = D y = x = Câu 25 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ a 3a 10 3a 13 3a 13 A B C D 20 13 26 x2 + 2x Câu 26 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ B −2 C D 15 A Câu 27 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình √ vuông √ 3a 10 A 6a B C 3a D 3a Trang 2/5 Mã đề 001 √ Câu 28 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng√góc với mặt phẳng đáy Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a 10 a A B C a D Câu 29 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 8π B 4π C 2π D 3π √ Câu 30 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ a3 a3 2a3 A B C D a3 Câu 31 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 B C D A 12 24 Câu 32 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 43.091.358 đồng B 46.538667 đồng C 45.188.656 đồng D 48.621.980 đồng r 3x + Câu 33 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (1; +∞) C D = (−∞; 0) D D = (−1; 4) ———————————————– Câu 34 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ √ √ √ tích khối trụ (T ) lớn 400π 250π 125π 500π B C D A 9 Câu 35 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = + 2(ln a)2 B P = C P = ln a D P = 2loga e Câu 36 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B m > −2 C −4 ≤ m ≤ −1 D m < Câu 37 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (−1; 1) C (−3; 0) D (1; 5) Câu 38 Chọn mệnh đề mệnh đề sau: R3 R3 R2 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B R3 |x2 − 2x|dx = − C D R2 (x2 − 2x)dx + R3 1 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x − 2x|dx = (x − 2x)dx − (x2 − 2x)dx R2 R3 R3 |x2 − 2x|dx R3 (x2 − 2x)dx Câu 39 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C Trang 3/5 Mã đề 001 √ 3a A √ 3a C √ 3a 30 B 10 √ a 15 D Câu 40 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 17 πa2 17 πa2 15 A B C D √ 2x − x2 + có số đường tiệm cận đứng là: Câu 41 Đồ thị hàm số y = x2 − A B C D Câu 42 Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = −8 − 12i B w = −8 + 12i C w = + 12i D w = −8 − 12i Câu 43 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 56 B 76 C 64 D 48 Câu 44 Tập nghiệm bất phương trình 52x+3 > −1 A R B (−3; +∞) C (−∞; −3) D ∅ Câu 45 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) A (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 √ C (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 B (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 Câu 46 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A 5x5 + sin x + C B x5 − sin x + C C x5 + sin x + C D 5x5 − sin x + C Câu 47 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B Câu 48 Cho hàm số f (x) liên tục R C R2 ( f (x) + 2x) = Tính B R2 f (x) 0 A −1 D C −9 D Câu 49 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2019 B 2021 C 2022 D 2020 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001