Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình chóp đều S ABCcó cạnh đáy bằng a và[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình chóp S ABCcó cạnh đáy a cạnh bên tích khối chóp là: q b Thể √ √ a2 b2 − 3a2 3ab2 A VS ABC = B VS ABC = √ 12 √122 3a b a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 √ Câu 2.√Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA′ = 3a Thể tích khối√lăng trụ cho là: A 3a3 B a3 C 3a3 D 3a3 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m < C m ≥ D m > Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; 2) C S = (−∞; ln3) D S = [ 0; +∞) Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 3a 5a 2a a B C D √ A √ 5 Câu Tính diện tích S hình phẳng giới hạn đường y = x , y = −x 1 B S = C S = D S = A S = 6 Câu Kết đúng? R R sin3 x A sin x cos x = − + C B sin2 x cos x = −cos2 x sin x + C R R sin3 x 2 C sin x cos x = cos x sin x + C D sin2 x cos x = + C Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu C πR3 D 4πR3 A πR3 B πR3 ′ ′ ′ Câu Cho lăng trụ ABC.A B C có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 5a 3a a 2a A B C √ D √ 5 Câu 10 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x2 − 2x + B y = x3 C y = −x4 + 3x2 − D y = x3 − 2x2 + 3x + Rm dx theo m? Câu 11 Cho số thực dươngm Tính I = x + 3x + 2m + m+1 m+2 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+2 m+1 2m + Câu 12 Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B ln x > ln y C log x > log y D log x > log y a a Trang 1/5 Mã đề 001 Câu 13 Hàm số sau đồng biến R? A y = tan x C y = x2 B y = x√4 + 3x2 + √ D y = x2 + x + − x2 − x + Câu 14 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ B m ∈ (−1; 2) C m ≥ D m ∈ (0; 2) A −1 < m < Câu 15 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + ty = + 2tz = B x = + 2ty = + tz = C x = + 2ty = + tz = D x = + 2ty = + tz = − 4t Câu 16 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π B 3π C D 3π A √ 3 R Câu 17 6x5 dxbằng A x6 + C B 30x4 + C C x6 + C D 6x6 + C Câu 18 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A 2i B −4 C D Câu 19 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A (−∞; −3] ∪ [3; +∞) B [−3; 3] C (0; 3] D (−∞; 3] √ Câu 20 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x + 4)2 + (y − 8)2 = 20 B (x − 4)2 + (y + 8)2 = √ D (x − 4)2 + (y + 8)2 = 20 C (x + 4)2 + (y − 8)2 = Câu 21 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 B −16 C D A 16 Câu 22 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 23 Với a số thực dương tùy ý, log5 (5a) A + log5 a B + log5 a C − log5 a D − log5 a Câu 24 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (−2; 3; 1) −n = (2; −3; 4) −n = (2; 3; −4) A → B → C → D → Câu 25 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x 3π π 3π π A V = B V = C V = D V = 2 √ Câu 26 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S mặt phẳng (S AB) vng√góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a 10 a A a B C D Trang 2/5 Mã đề 001 x−3 y−6 z−1 = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x y−1 z−1 x y−1 z−1 = B = = A = −3 −1 x y−1 z−1 x−1 y z−1 C = = D = = −1 −3 −1 −3 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : Câu 28 Đồ thị hình bên đồ thị hàm số nào? 2x + 2x − 2x + B y = C y = A y = x+1 x+1 x−1 D y = −2x + 1−x Câu 29 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 Câu 30 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 4 − 4x + B 2x − 4x C x − x + 2x D x + − 4x A x + 4 Câu 31 Tập xác định hàm số y = logπ (3 x − 3) là: A Đáp án khác B [1; +∞) C (1; +∞) D (3; +∞) √ x− x+2 Câu 32 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 33 Trong khơng gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ → − −v = (1; 13; 16) −u + 3→ −v = (2; 14; 14) A u + 3→ B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Câu 34 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 35 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 15 πa2 17 πa 17 B C D A 4 Câu 36 Hàm số hàm số sau có đồ thị hình vẽ bên A y = x3 − 3x2 B y = −2x4 + 4x2 C y = −x4 + 2x2 D y = −x4 + 2x2 + Câu 37 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 10π C 8π D 6π √ Câu 38 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = D y′ = √ 2(x − 1) ln (x − 1) ln (x − 1)log4 e x2 − ln 3x Câu 39 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C m = D Không tồn m Trang 3/5 Mã đề 001 Câu 40 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a B C D A 3 Câu 41 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < − B m > C m > m < −1 D m < −2 Câu 42 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 20 B 13 C 17 D 18 Câu 43 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−1; −4) B (1; −4) C (−3; 0) D (0; −3) Câu 44 Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = −8 − 12i B w = −8 + 12i C w = −8 − 12i D w = + 12i Câu 45 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) không cắt mặt cầu (S ) B (P) tiếp xúc mặt cầu (S ) C (P) qua tâm mặt cầu (S ) D (P) cắt mặt cầu (S ) Câu 46 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (0 ; +∞) B (−1 ; 4) C (−2 ; 0) D (−∞ ; −2) Câu 47 Đạo hàm hàm số y = (2x + 1) tập xác định 4 − − A − (2x + 1) B − (2x + 1) 3 1 − − C (2x + 1) ln(2x + 1) D 2(2x + 1) ln(2x + 1) − Câu 48 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2022 B 2020 C 2019 D 2021 Câu 49 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 220 55 14 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001