1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn khảo sát chất lượng thptqg môn toán (977)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 127,39 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây nhận trục tung là t[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x2 − 2x + C y = x − 2x + 3x + D y = x3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = − 4t B x = + 2ty = + tz = C x = + 2ty = + tz = D x = + ty = + 2tz = √ ′ ′ ′ ′ 3a Thể tích khối lăng trụ cho là: Câu Cho lăng trụ ABC.A B C có đáy a, AA = √ √ A 3a3 B 3a3 C 3a3 D a3 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hoành độ x = là: x x −1+ B y = +1− A y = ln ln 5 ln ln x x C y = − D y = + ln ln 5 ln Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (−2; 1; 2) C (2; −1; −2) D (−2; −1; 2) Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −15 B m = 13 C m = D m = −2 Câu R7 Công thức sai? A R e x = e x + C C sin x = − cos x + C R B R a x = a x ln a + C D cos x = sin x + C Câu Hàm số sau khơng có cực trị? A y = x4 + 3x2 + B y = x3 − 6x2 + 12x − C y = cos x D y = x2 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H3) B (H2) C (H1) D (H4) Câu 10 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = (−∞; ln3) C S = [ 0; +∞) D S = [ -ln3; +∞) Câu 11 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A −6 B C D p Câu 12 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < π y > − 4π2 C Nếux = y = −3 D Nếu < x < y < −3 ax + b Câu 13 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ab < B ad > C bc > D ac < Trang 1/5 Mã đề 001 Câu 14 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = sin x B y = x−1 C y = tan x D y = x3 − 2x2 + 3x + Câu 15 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; −5; 0) C (0; 1; 0) D (0; 5; 0) √ ′ Câu 16 Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA = 3a Thể tích khối√lăng trụ cho là: √ 3 A 3a B a C 3a3 D 3a3 Câu 17 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A′ B′C ′ √ √ a3 2a3 A V = B V = C V = a3 D V = 3a3 3 Câu 18 Đồ thị hàm số y = x3 − 3x2 − 2x cắt trục hoành điểm? A B C D Câu 19 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 364 B S = 96 C S = 84 D S = 1979 −a = (4; −6; 2) Phương Câu 20 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = + 2ty = −3tz = + t C x = −2 + 2ty = −3tz = + t B x = + 2ty = −3tz = −1 + t D x = −2 + 4ty = −6tz = + 2t Câu 21 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 22 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C − log5 a D + log5 a Câu 23 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m < −1 B m > C −1 ≤ m < D −1 ≤ m ≤ Câu 24 Biết phương trình log22 x − 7log2 x + = có nghiệm x1 , x2 Giá trị x1 x2 A B 512 C 128 D 64 √ Câu 25 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a 10 a a A B a C D √ Câu 26 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ a3 2a3 a A B C a3 D 3 Câu 27 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 3a 10 3a 13 a A B C D 26 20 13 Trang 2/5 Mã đề 001 Câu 28 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C D −6 Câu 29 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √ √ √h √ 2π − π− 2π − 3 B C D A 12 12 Câu 30 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x π π 3π 3π B V = C V = D V = A V = 2 Câu 31 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D 2x − Câu 32 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ D m = ±1 A m = ±3 B m = ±2 C m = ± Câu 33 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 500π 125π 250π 400π A B C D 9 √ Câu 34 Tính đạo hàm hàm số y = log4 x2 − 1 x x x B y′ = √ D y′ = A y′ = C y′ = 2 (x − 1) ln (x − 1)log4 e 2(x − 1) ln x2 − ln Câu 35 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080254 đồng C 36080251 đồng D 36080255 đồng r 3x + Câu 36 Tìm tập xác định D hàm số y = log2 x−1 A D = (1; +∞) B D = (−∞; 0) C D = (−∞; −1] ∪ (1; +∞) D D = (−1; 4) ———————————————– Câu 37 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối √ √ √ √ chóp S ABC 3 3 a a 15 a 15 a 15 A B C D 16 Câu 38 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx Trang 3/5 Mã đề 001 C R3 |x2 − 2x|dx = − D R3 R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − R3 |x2 − 2x|dx Câu 39 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π C D A 6π B 5 Câu 40 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m > C m < −2 D m > m < − Câu 41 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B −4 ≤ m ≤ −1 C m > −2 D −3 ≤ m ≤ x−2 y x−1 = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 B ( ; − ; ) C (2 ; −3 ; 1) D ( ; − ; ) A ( ; − ; ) 3 3 3 3 Câu 42 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : Câu 43 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 44 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 18 B 12 C 21 D 27 Câu 45 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 76 B 48 C 56 D 64 Câu 46 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD)√theo a √ a a A B C 2a D a 2 Câu 47 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A a3 B 6a2 C 2a3 D 6a3 x−2 y−6 z+2 Câu 48 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ A √ B √ C √ D 10 10 53 Câu 49 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 2; 3) −n = (1; −2; 3) −n = (1; 3; −2) −n = (1; −2; −1) A → B → C → D → Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 09:37