Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm s[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m ≤ C m > D m < Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 C D A −6 B Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 1; 0) B (0; 0; 5) C (0; −5; 0) D (0; 5; 0) Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 C y = x2 − 2x + D y = x3 − 2x2 + 3x + √ Câu 5.√Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA′ = 3a Thể tích khối√lăng trụ cho là: B a3 C 3a3 D 3a3 A 3a3 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = 13 C m = −15 D m = −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa√độ Oxyz cho → −u | = −u | = → − → − C |→ D |→ A | u | = B | u | = đúng? x B Hàm số nghịch biến (0; +∞) D Hàm số đồng biến R Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến R Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = −x4 + 3x2 − 2 C y = x − 2x + D y = x3 − 2x2 + 3x + Câu 10 Hàm số sau đồng biến R? A y = tan x C y = x4 + 3x2 + √ √ B y = x2 + x + − x2 − x + D y = x2 p Câu 11 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếux = y = −3 C Nếu < x < π y > − 4π2 D Nếu < x < y < −3 Câu 12 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C D −6 Câu 13 Cho√ hai số thực a, bthỏa mãn sau sai? √ √ √ √5 a > b > Kết luận √5 2 a A a > b B a < b C e > eb D a− < b− Câu 14 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = [ 0; +∞) C S = [ -ln3; +∞) D S = (−∞; 2) Trang 1/5 Mã đề 001 Câu 15 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 21 C R = D R = 29 Câu 16 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B m ≥ C m ∈ (0; 2) D −1 < m < Câu 17 Đồ thị hàm số y = x3 − 3x2 − 2x cắt trục hoành điểm? A B C D √ Câu 18 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x − 4)2 + (y + 8)2 = C (x + 4)2 + (y − 8)2 = 20 B (x − 4)2 + (y + 8)2 = 20 √ D (x + 4)2 + (y − 8)2 = Câu 19 Thể tích khối lập phương có cạnh 3a là: A 27a3 B 3a3 C 2a3 D 8a3 Câu 20 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A x = −2 B M(−2; −4) C x = D M(1; −2) Câu 21 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx 32 26 C D 3 Câu 22 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng√đáy, S A = 2a Gọi φ góc tạo hai mặt phẳng√(S AC), (S BC) Tính cos√ φ =? 3 15 B C D A 2 5 Câu 23 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = 3a3 B V = 2a3 C V = a3 D V = R Câu 24 6x5 dxbằng D 6x6 + C A 30x4 + C B x6 + C C x6 + C √3 a2 b Câu 25 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A − B C D 3 A 10 B Câu 26 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn ngồi 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 12π(dm3 ) B 54π(dm3 ) C 6π(dm3 ) D 24π(dm3 ) Câu 27 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC đường sinh hình trụ (T ) Tính cạnh hình vng √ √ 3a 10 B 6a C 3a D A 3a Trang 2/5 Mã đề 001 Câu 28 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho√tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S B 125dm2 C 106, 25dm2 D 75dm2 A 50 5dm2 √ Câu 29 Cho hình chóp tứ giác S ABCD có đáy hình vuông cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a 10 a B a D C A Câu 30 Trong hệ tọa độ Oxyz, cho A(1; kính AB có phương trình √ 2; 3), B(−3; 0; 1) Mặt2 cầu đường 2 2 A (x + 1) + (y − 1) + (z − 2) = B (x − 1) + (y + 1) + (z + 2)2 = C (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 D (x + 1)2 + (y − 1)2 + (z − 2)2 = Câu 31 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5 5 5π 20 5πa3 A V = πa B V = πa C V = a D V = 6 Câu 32 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 50m B 49m C 47m D 48m Câu 33 Hàm số hàm số sau đồng biến R A y = x4 + 3x2 B y = −x3 − x2 − 5x 4x + D y = x3 + 3x2 + 6x − C y = x+2 Câu 34 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = x+cos3x ln ′ x+cos3x C y = (1 + sin 3x)5 ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 35 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D Câu 36 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D x Câu 37 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 64 32 128 Câu 38 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 4a3 B 6a3 C 9a3 D 3a3 Câu 39 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 33π 31π A B C D 6π 5 Câu 40 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C −2 D Trang 3/5 Mã đề 001 Câu 41 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −16 B m = C m = m = −10 D m = Câu 42 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B C −3 D −2 √ √ a Tính góc Câu 43 Cho hình chóp S ABCD có cạnh đáy a đường cao S H mặt bên (S DC) mặt đáy A 90o C 45o B 30o D 60o Câu 44 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + 2ty = 2tz = + t B x = + ty = tz = − t C x = + ty = tz = + t D x = − ty = tz = + t x−2 y−6 z+2 Câu 45 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ A √ D √ B 10 C √ 10 53 Câu 46 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 14 55 220 Câu 47 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a A B C 2a D a 2 Câu 48 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A Câu 49 Nếu B R6 A −6 f (x) = R6 g(x) = −4 B C R6 D ( f (x) + g(x)) C D −2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001