Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt p[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (2; −1; −2) C (2; −1; 2) D (−2; −1; 2) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; 6; 0) C (0; 2; 0) D (0; −2; 0) Câu Hàm số sau đồng biến R? A y = tan x C y = x2 B y = x√4 + 3x2 + √ D y = x2 + x + − x2 − x + x π π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = + C F( ) = − D F( ) = + 4 4 4 Câu R5 Công thức sai? R A R e x = e x + C B R sin x = − cos x + C C cos x = sin x + C D a x = a x ln a + C đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số nghịch biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R −u (2; −2; 1), kết luận sau đúng? Câu Trong hệ tọa độ Oxyz cho → √ không gian với→ → − − −u | = −u | = A | u | = B | u | = C |→ D |→ Câu Kết luận sau tính đơn điệu hàm số y = √ Câu lăng trụ ABC.A′ B′C ′ có đáy a, AA′ = 3a Thể tích khối √ lăng trụ cho là: √ Cho 3 A 3a B a C 3a D 3a3 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A 4πR3 B πR3 C πR3 D πR3 √ x Câu 10 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H1) B (H2) C (H4) D (H3) Câu R11 Công thức sai? A R e x = e x + C C a x = a x ln a + C R B R sin x = − cos x + C D cos x = sin x + C Câu 12 Cho mãn√ a > b > Kết luận sau sai? √ √ √ √5 hai số thực a, bthỏa √5 A a < b B a > b C ea > eb D a− < b− Câu 13 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m > e2 B m ≥ e−2 C m > 2e D m > Câu 14 Hàm số sau khơng có cực trị? A y = x4 + 3x2 + C y = cos x B y = x2 D y = x3 − 6x2 + 12x − Trang 1/5 Mã đề 001 Câu 15 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ D R = 21 A R = B R = C R = 29 + 2x Câu 16 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? B −4 < m < C < m , D ∀m ∈ R A m < R3 Câu 17 Biết F(x) = x nguyên hàm hàm số f (x) R Giá trị [1 + f (x)]dx 26 32 A B C 10 D 3 Câu 18 Đường cong hình bên đồ thị hàm số đây? A y = x3 − 3x2 + B y = −x3 + 3x2 + C y = x4 − 2x2 + D y = −x4 + 2x2 + Câu 19 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; −3; 4) −n = (−2; 3; 1) −n = (2; 3; −4) −n = (−2; 3; 4) A → B → C → D → Câu 20 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A −x + 2y + 2z + = B x + 2y + 2z + = C 3x − 4y + 6z + 34 = D x − 2y − 2z − = Câu 21 Biết phương trình log22 x − 7log2 x + = có nghiệm x1 , x2 Giá trị x1 x2 A 512 B 128 C D 64 3 R R R Câu 22 Biết f (x)dx = g(x)dx = Khi [ f (x) + g(x)]dx A 2 B −2 C D √ Câu 23 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ A d = a B d = a C d = a D d = 2a π R4 Câu 24 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 16π − 16 π2 + 16π − π2 + 15π π2 − B C D A 16 16 16 16 Câu 25 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 43.091.358 đồng B 46.538667 đồng C 45.188.656 đồng D 48.621.980 đồng x −2x +3x+1 Câu 26 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) B Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) C Hàm số đồng biến khoảng (−∞; 1) (3; +∞) D Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) Câu 27 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S √ A 106, 25dm2 B 75dm2 C 125dm2 D 50 5dm2 Trang 2/5 Mã đề 001 Câu 28 Tập nghiệm bất phương trình log4 (3 x − 1).log A S = (−∞; 1] ∪ [2; +∞) C S = (0; 1] ∪ [2; +∞) 3x − ≤ là: 16 4 B S = [1; 2] D S = (1; 2) Câu 29 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga x có nghĩa với ∀x ∈ R B loga = a loga a = n D loga (xy) = loga x.loga y C loga x = log x , (x > 0, n , 0) an (2 ln x + 3)3 : x (2 ln x + 3)4 (2 ln x + 3)4 ln x + (2 ln x + 3)2 A + C B + C C + C D + C 8 Câu 31 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 4a2 b 4a2 b 2a2 b B √ C √ D √ A √ 3π 3π 2π 2π Câu 30 Họ nguyên hàm hàm số f (x) = Câu 32 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−1; +∞) B S = (−∞; −4) ∪ (−1; +∞) C S = (−4; −1) D S = [−1; +∞) Câu 33 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D R ax + b 2x Câu 34 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 35 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ 3a 3a a 15 3a 30 A B C D 10 2 √ 2x − x2 + Câu 36 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 37 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = cos x π Câu 38 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 6π 3π A ln + B ln + C D ln + 5 5 r 3x + Câu 39 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) ———————————————– B D = (−∞; −1] ∪ (1; +∞) C D = (1; +∞) D D = (−∞; 0) Trang 3/5 Mã đề 001 Câu 40 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + πR2 B S = πRl + 2πR2 C S = 2πRl + 2πR2 D S = πRh + πR2 Câu 41 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a2 Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 a3 15 B C D A 16 Câu 42 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a A B C a D 2a 2 Câu 43 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 21 B 27 C 18 D 12 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 44 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường trịn (C) √ √ A r = B r = C r = D r = Câu 45 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = + t B x = + ty = tz = − t C x = + 2ty = 2tz = + t D x = − ty = tz = + t Câu 46 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A −384 B −192 C 384 D 192 Câu 47 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A C10 B A310 C 310 D 103 Câu 48 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 7π 512π 22π B V = C V = D V = A V = 15 Câu 49 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −6 B −4 C −2 D −8 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001