Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai? A a[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu 1.√ Cho √hai số thực a, bthỏa√mãn a > b > Kết luận nào√sau sai? √ √ 2 − − A a > b B a eb Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ -ln3; +∞) C S = (−∞; ln3) D S = [ 0; +∞) π π π x F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = − C F( ) = + D F( ) = + 4 4 4 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ a 2a 3a 5a B √ C √ D A 5 Câu Tính I = R1 √3 7x + 1dx 45 21 20 60 B I = C I = D I = 28 28 ′ ′ ′ ′ Câu Cho hình hộp ABCD.A B C D có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 20a3 C 60a3 D 30a3 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số nghịch biến (0; +∞) C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A 3π B C √ D 3π 3 A I = Câu Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 55 14 220 2 Câu 10 Cho hàm số f (x) = − x + (2m + 3)x − (m + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C 16 D Câu 11 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (−∞; 3) B Hàm số cho nghịch biến khoảng (1; 4) Trang 1/4 Mã đề 001 C Hàm số cho đồng biến khoảng (1; 4) D Hàm số cho nghịch biến khoảng (3; +∞) Câu 12 Nếu R6 f (x) = A −2 R6 g(x) = −4 R6 ( f (x) + g(x)) B C −6 Câu 13 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A x5 − sin x + C B 5x5 + sin x + C C 5x5 − sin x + C D D x5 + sin x + C Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) cắt mặt cầu (S ) B (P) tiếp xúc mặt cầu (S ) C (P) qua tâm mặt cầu (S ) D (P) không cắt mặt cầu (S ) Câu 15 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; −2; −1) −n = (1; 3; −2) −n = (1; −2; 3) −n = (1; 2; 3) A → B → C → D → Câu 16 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B −1 C −7 D Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 18 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực C Mô-đun số phức z số thực dương B Mô-đun số phức z số thực không âm D Mô-đun số phức z số phức Câu 19 Tìm số phức liên hợp số phức z = i(3i + 1) B z = −3 + i C z = −3 − i A z = − i Câu 20 Số phức z = A -1 + 2i + i 2−i B D z = + i 2017 có tổng phần thực phần ảo C (1 + i)(2 − i) Câu 21 Mô-đun số phức z = √ + 3i √ A |z| = B |z| = C |z| = D D |z| = Câu 22 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực là−3 phần ảo −2i C Phần thực phần ảo 2i D Phần thực −3 phần ảo là−2 z2 Câu 23 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 13 B 11 C D Câu 24 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D 2017 (1 + i) Câu 25 Số phức z = có phần thực phần ảo đơn vị? 21008 i 1008 A B C D Trang 2/4 Mã đề 001 Câu 26 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n2 = (1; −1; 1) B → n4 = (1; 1; −1) C → n3 = (1; 1; 1) D → n1 = (−1; 1; 1) Câu 27 Cho số phức z = + 9i, phần thực số phức z2 A −77 B 85 C D 36 Câu 28 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (−∞; 1) C (0; 2) D (3; +∞) Câu 29 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (4; 5) B (6; 7) C (2; 3) D (3; 4) Câu 30 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 B C D A Câu 31 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 B C D A x−2 y−1 z−1 Câu 32 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Câu 33 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = xπ−1 C y′ = πxπ π D y′ = πxπ−1 Câu 34 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = −1 D A = z Câu 35 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ B C D A Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 4)2 C P = |z|2 − D P = (|z| − 2)2 √ Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm N Câu 38 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Trang 3/4 Mã đề 001 Câu 39 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| ≥ B |A| ≤ 2z − i Mệnh đề sau đúng? + iz C |A| > D |A| < Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm S D điểm P Câu 41 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = 2016 B P = −2016 C P = D max T = Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp sau đây? ! ! ! 9 1 B ; C ; +∞ D 0; A ; 4 4 Câu 43 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; 2; −3); R = B I(1; −2; 3); R = C I(1; 2; 3); R = D I(−1; 2; −3); R = Câu 44 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A [−3; 3] B (0; 3] C (−∞; 3] D (−∞; −3] ∪ [3; +∞) Câu 45 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B −1 ≤ m < C m > D m < −1 R3 Câu 46 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị [1 + f (x)]dx 26 A 32 −a = (4; −6; 2) Phương Câu 47 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = + 2ty = −3tz = −1 + t B x = −2 + 4ty = −6tz = + 2t C x = + 2ty = −3tz = + t D x = −2 + 2ty = −3tz = + t B 10 C D Câu 48 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 B M(− ; ; −1) C M(− ; ; −1) D M( ; ; −1) A M(− ; ; 2) 4 4 Câu 49 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x A cos 3xdx = sin 3x + C B cos 3xdx = − + C R R sin 3x C cos 3xdx = + C D cos 3xdx = sin 3x + C x+1 y z−2 Câu 50 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : = = Viết 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : x − 2z + = B (P) : x − 2y + = C (P) : y + z − = D (P) : y − z + = - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001