Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đ[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = C m = −15 D m = 13 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; 1; 0) C (0; 0; 5) D (0; −5; 0) Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ C m ≥ D m ∈ (−1; 2) A m ∈ (0; 2) B −1 < m < √ Câu Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA√′ = 3a Thể tích khối√lăng trụ cho là: A a3 B 3a3 C 3a3 D 3a3 Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga (x − 2)2 = 2loga (x − 2) B loga x2 = 2loga x D aloga x = x C loga2 x = loga x Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến R D Hàm số nghịch biến (0; +∞) Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = [ -ln3; +∞) C S = (−∞; 2) D S = [ 0; +∞) −u (2; −2; 1), kết luận sau đúng? Câu Trong hệ tọa độ Oxyz cho → √ không gian với→ → − − −u | = −u | = B | u | = C |→ D |→ A | u | = Câu Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (1; 4) B Hàm số cho đồng biến khoảng (−∞; 3) C Hàm số cho nghịch biến khoảng (3; +∞) D Hàm số cho đồng biến khoảng (1; 4) R Câu 10 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x A f (x) = cos 3x B f (x) = − C f (x) = −3 cos 3x D f (x) = 3 Câu 11 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + 2ty = 2tz = + t B x = + ty = tz = − t C x = + ty = tz = + t D x = − ty = tz = + t Câu 12 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 56 B 64 C 48 D 76 Trang 1/4 Mã đề 001 Câu 13 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 512π 22π 7π A V = B V = C V = D V = 15 Câu 14 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B C 3a D √ √ a Câu 15 Cho hình chóp S ABCD có cạnh đáy a đường cao S H Tính góc mặt bên (S DC) mặt đáy A 45o B 30o C 60o D 90o Câu 16 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A N(1 ; ; 7) B Q(4 ; ; 2) C P(4 ; −1 ; 3) D M(0 ; ; 2) 2(1 + 2i) Câu 17 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B 13 C D √ Câu 18 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B ≤ m ≤ C −1 ≤ m ≤ D m ≥ m ≤ Câu 19 Cho số phức z = + 5i Tìm số phức w = iz + z A w = + 7i B w = −3 − 3i C w = −7 − 7i D w = − 3i Câu 20 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D + 2i + i2017 có tổng phần thực phần ảo Câu 21 Số phức z = 2−i A B C -1 D − 2i (1 − i)(2 + i) Câu 22 Phần thực số phức z = + 2−i + 3i 11 29 29 11 A − B C − D 13 13 13 13 2016 Câu 23 Phần thực số phức z = + (1 + i) + (1 + i) + · · · + (1 + i) 1008 1008 2016 A −2 B C −2 D −21008 + z2 Câu 24 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ D A 13 B C 11 Câu 25 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 i B (1 + i)2018 = 21009 C (1 + i)2018 = 21009 i D (1 + i)2018 = −21009 Câu 26 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 A B C D Câu 27 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Trang 2/4 Mã đề 001 Câu 28 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (3; +∞) B (−∞; 1) C (1; 3) D (0; 2) Câu 29 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; 6) B (6; 7) C (−6; 7) D (7; −6) Câu 30 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho B 2πrl C πrl2 D πrl A πr2 l 3 Câu 31 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A −2 B C D −3 Câu 32 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết a, thể tích khối lăng trụ cho khoảng cách từ A đến mặt phẳng (A′ BC) √ √ √ √ 3 3 A a B a C 2a a D Câu 33 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 210 B 225 C 30 D 105 Câu 34 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 35 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ C D A B 13 z+1 Câu 36 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = √ điểm A hình vẽ bên điểm Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm N z Câu 38 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? 1√+ |z|2 1 A B C D Câu 39 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 9 A ; +∞ B ; C ; D 0; 4 4 √ 2 Mệnh đề Câu 40 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? Trang 3/4 Mã đề 001 √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 41 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| ≥ B |A| > √ B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2z − i Mệnh đề sau đúng? + iz C |A| < D |A| ≤ Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = |z|2 − D P = (|z| − 2)2 Câu 43 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại C Hàm số đạt cực đại B Hàm số đạt cực đại D Hàm số đạt cực đại − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 44 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ → √ → − − → − − −a = − B → C b ⊥→ c D b ⊥→ a A c = −a = (4; −6; 2) Phương Câu 45 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 4ty = −6tz = + 2t B x = + 2ty = −3tz = + t C x = + 2ty = −3tz = −1 + t D x = −2 + 2ty = −3tz = + t Câu 46 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A 3x − 4y + 6z + 34 = B −x + 2y + 2z + = C x + 2y + 2z + = D x − 2y − 2z − = Câu 47 Trong số phức z thỏa mãn z − i = z¯ − − 3i Hãy tìm z có mơđun nhỏ 27 27 6 27 B z = − − i C z = + i D z = − i A z = − + i 5 5 5 5 ′ ′ ′ Câu 48 Cho lăng trụ đứng ABC.A B C có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng ′ ′ ′ 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V √ khối lăng trụ ABC.A B C 3 √ 2a a A V = 3a3 B V = C V = D V = a3 3 3 3 Câu 49 Hàm số y = (x + m) + (x + n) − x đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 A −16 B C D 16 Câu 50 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 1) −n = (−2; 3; 4) −n = (2; 3; −4) −n = (2; −3; 4) A → B → C → D → - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001