Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện x ≥ 0; y ≤ 18x3 + 4x = (3 − y[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux > thìy < −15 C Nếux = y = −3 D Nếu < x < y < −3 Câu Cho hai số thực a, bthỏa√ mãn √a > b > Kết luận√nào sau√ sai? √5 √ A ea > eb B a > b C a− < b− D a < b Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C 4πR3 D πR3 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = x2 − 2x + C y = −x4 + 3x2 − D y = x3 − 2x2 + 3x + x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 A y = −1 B y = C y = D y = − R R R R 2 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = +1− B y = − ln ln 5 ln ln x x −1+ D y = + C y = ln ln 5 ln Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (0; 2) B m ≥ C m ∈ (−1; 2) D −1 < m < 2 2 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x + y + z − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = C R = 29 D R = 21 Câu Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 3; −2) −n = (1; 2; 3) −n = (1; −2; −1) −n = (1; −2; 3) A → B → C → D → Câu 10 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−∞ ; −2) B (−2 ; 0) C (−1 ; 4) D (0 ; +∞) Câu 11 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A J(−3; 2; 7) B I(−1; −2; 3) C K(3; 0; 15) D H(−2; −1; 3) Câu 12 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 18 B 12 C 21 D 27 Trang 1/4 Mã đề 001 Câu 13 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 40 B 30 C 60 D 50 Câu 14 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 55 220 14 Câu 15 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 6a2 B 6a3 C 2a3 D a3 1 Câu 16 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C D 16 Câu 17 Tính mô-đun số phức √ z thỏa mãn z(2 − i) + 13i = √ 34 B |z| = C |z| = 34 A |z| = 34 (1 + i)(2 − i) Câu 18 Mô-đun số phức z = √ + 3i A |z| = B |z| = C |z| = √ 34 D |z| = D |z| = √ Câu 19 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = + 7i C w = − 3i D w = −7 − 7i − 2i (1 − i)(2 + i) Câu 20 Phần thực số phức z = + 2−i + 3i 11 29 29 11 A B C − D − 13 13 13 13 Câu 21 Tìm số phức liên hợp số phức z = i(3i + 1) A z = − i B z = −3 − i C z = + i D z = −3 + i 1 25 = + Câu 22 Cho số phức z thỏa Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −31 B 31 C −17 D 17 Câu 23 Những số sau vừa số thực vừa số ảo? A Chỉ có số B C.Truehỉ có số C Khơng có số Câu 24 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B C -1 D D Câu 25 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 + C −21008 D −22016 Câu 26 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (4; 5) B (2; 3) C (6; 7) D (3; 4) R4 R4 R4 Câu 27 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C D −1 2x + Câu 28 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 2 1 A y = − B y = C y = D y = − 3 3 Trang 2/4 Mã đề 001 Câu 29 Với a số thực dương tùy ý, ln(3a) − ln(2a) A lna B ln(6a2 ) C ln 3 D ln Câu 30 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x = + 2t x=5+t y = + 3t y = −1 + t y = −1 + 3t y = + 2t A B C D z = −1 + t z = −1 + 3t z = −1 + t z = + 3t Câu 31 Đồ thị hàm số có dạng đường cong hình bên? x−3 B y = x4 − 3x2 + C y = x3 − 3x − D y = x2 − 4x + A y = x−1 Câu 32 Tập nghiệm bất phương trình x+1 < A (1; +∞) B (−∞; 1) C [1; +∞) D (−∞; 1] Câu 33 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 105 B 225 C 210 D 30 Câu 34 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i C |w|min = D |w|min = A |w|min = B |w|min = 2 √ 2 Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √2 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = 34 + C P = + D P = 26 A P = Câu 37 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 21008 B −22016 C 22016 D −21008 Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Câu 39 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = −2016 B P = 2016 C P = D max T = √ Câu 40 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B C a + b + c D a2 + b2 + c2 − ab − bc − ca Câu 41 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp ! sau đây? ! ! 9 A ; B 0; C ; +∞ D ; 4 4 Trang 3/4 Mã đề 001 Câu 43 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; −2; 3); R = B I(1; 2; 3); R = C I(−1; 2; −3); R = D I(1; 2; −3); R = Câu 44 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(−2; 5) B M(5; 2) C M(−5; −2) D M(5; −2) √ Câu 45 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x + 4)2 + (y − 8)2 = B (x + 4)2 + (y − 8)2 = 20 √ 2 C (x − 4) + (y + 8) = 20 D (x − 4)2 + (y + 8)2 = Câu 46 Biết F(x) = x nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx A 32 B C 26 D 10 x−1 y+2 z Câu 47 Đường thẳng (∆) : = = không qua điểm đây? −1 A (3; −1; −1) B (1; −2; 0) C A(−1; 2; 0) D (−1; −3; 1) Câu 48 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ B 5πa2 C 6πa2 D 2πa2 A 4πa2 −a = (4; −6; 2) Phương Câu 49 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = + 2ty = −3tz = + t C x = −2 + 2ty = −3tz = + t B x = + 2ty = −3tz = −1 + t D x = −2 + 4ty = −6tz = + 2t Câu 50 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π , Tính diện tích tam giác ABC lượt hình trịn xoay tích 672π, 13 A S = 96 B S = 1979 C S = 84 D S = 364 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001