Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện x ≥ 0; y ≤ 18x3 + 4x = (3 − y[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếux = y = −3 C Nếux > thìy < −15 D Nếu < x < π y > − 4π2 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 − 2x2 + 3x + C y = x D y = x2 − 2x + x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 A y = B y = C y = − D y = −1 R R R R 2 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (2; −1; 2) C (−2; −1; 2) D (−2; 1; 2) Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m ≤ C m < D m > Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x +1− B y = + A y = ln ln 5 ln x x C y = −1+ D y = − ln ln 5 ln ln Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; 21; 21) B C(8; ; 19) C C(20; 15; 7) D C(6; −17; 21) Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; 5; 0) C (0; −5; 0) D (0; 1; 0) Câu Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a A B 2a C a D 2 Câu 10 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (−∞; 3) B Hàm số cho nghịch biến khoảng (1; 4) C Hàm số cho nghịch biến khoảng (3; +∞) D Hàm số cho đồng biến khoảng (1; 4) Câu 11 Nếu R6 A f (x) = R6 g(x) = −4 B R6 ( f (x) + g(x)) C −2 D −6 Trang 1/4 Mã đề 001 Câu 12 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B C D 3a y x−1 x−2 = = điểm Câu 13 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : −1 ′ A(2 ; ; 3) Toạ độ điểm A đối xứng với A qua đường thẳng d tương ứng 10 5 A ( ; − ; ) B (2 ; −3 ; 1) C ( ; − ; ) D ( ; − ; ) 3 3 3 3 ◦ Câu 14 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120 Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 21 C 12 D 18 Câu 15 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 16 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Câu 17 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 18 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 19 Với số phức z, ta có |z + 1|2 B z2 + 2z + A z · z + z + z + C z + z + D |z|2 + 2|z| + Câu 20 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực là−3 phần ảo −2i C Phần thực −3 phần ảo là−2 D Phần thực phần ảo 2i Câu 21 Tìm số phức liên hợp số phức z = i(3i + 1) B z = −3 − i C z = + i A z = − i D z = −3 + i Câu 22 Trong kết luận sau, kết luận sai A Mô-đun số phức z số phức B Mô-đun số phức z số thực C Mô-đun số phức z số thực không âm D Mô-đun số phức z số thực dương (1 + i)(2 − i) Câu 23 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = 2(1 + 2i) Câu 24 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C D 13 (1 + i)(2 + i) (1 − i)(2 − i) Câu 25 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z số ảo B |z| = C z = z D z = z Trang 2/4 Mã đề 001 Câu 26 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d > R C d = D d = R Câu 27 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16 16 16π B C D A 15 9 15 ′ ′ ′ Câu 28 Cho khối lăng trụ đứng ABC · A B C √có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 A a B a C a D 2a3 Câu 29 Tích tất nghiệm phương trình ln x + 2lnx − = 1 A −2 B −3 C D Câu 30 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C D −1 800π Gọi A B hai điểm thuộc Câu 31 Cho khối nón có đỉnh S , chiều cao thể tích đường trịn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A D B C 24 π Câu 32 Trên khoảng (0; +∞), đạo hàm hàm số y = x là: A y′ = xπ−1 B y′ = πxπ−1 C y′ = xπ−1 D y′ = πxπ π Câu 33 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A B C 11 D 12 √ √ √ 42 √ + 3i+ 15 Mệnh đề đúng? Câu 34 Cho số phức z thỏa mãn − 5i |z| = z A < |z| < B < |z| < C < |z| < D < |z| < 2 √ Câu 35 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B C a2 + b2 + c2 − ab − bc − ca D a + b + c Câu 36 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = D P = A P = 2 Câu 37 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = C A = + i D A = −1 √ điểm A hình vẽ bên điểm Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm M Trang 3/4 Mã đề 001 √ Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = + C P = 26 D P = 34 + A P = Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A √ B C D 2 Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Câu 42 Cho số phức z , thỏa mãn A |z| = B |z| = z+1 số ảo Tìm |z| ? z−1 C |z| = D |z| = Câu 43 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −6 B S = C S = −5 D S = Câu 44 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−∞; 1) C (0; 1) D (−1; 0) Câu 45 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A x = −2 B x = C M(−2; −4) D M(1; −2) Câu R46 Tìm nguyên hàm hàm số f (x) = cos 3x R A cos 3xdx = sin 3x + C B cos 3xdx = sin 3x + C R R sin 3x sin 3x + C D cos 3xdx = − + C C cos 3xdx = 3 Câu 47 Thể tích khối lập phương có cạnh 3a là: A 8a3 B 2a3 C 3a3 D 27a3 Câu 48 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A [−3; 3] B (−∞; −3] ∪ [3; +∞) C (0; 3] D (−∞; 3] Câu 49 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1) + (y − 3) + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A x + 2y + 2z + = B 3x − 4y + 6z + 34 = C x − 2y − 2z − = D −x + 2y + 2z + = 2 Câu 50 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 209 B C D A 210 105 210 21 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001