Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Kết quả nào đúng? A ∫ sin2 x cos x = sin3x 3 +C B ∫ sin2 x cos x = −cos2[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Kết đúng? R R sin3 x A sin x cos x = + C B sin2 x cos x = −cos2 x sin x + C R R sin3 x C sin x cos x = − + C D sin2 x cos x = cos2 x sin x + C Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + 2ty = + tz = C x = + 2ty = + tz = − 4t D x = + ty = + 2tz = Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A 3π B C 3π D √ 3 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 20a3 C 60a3 D 30a3 + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B < m , C ∀m ∈ R D −4 < m < Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = x3 − 2x2 + 3x + x−1 C y = sin x D y = tan x Câu Số nghiệm phương trình x + 5.3 x − = A B C D √ Câu có đáy a, AA = 3a Thể tích khối lăng trụ cho là: √ Cho lăng trụ ABC.A√ B C A 3a3 B 3a3 C 3a3 D a3 ′ ′ ′ ′ Câu Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, diện √ tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 12 B 21 C 18 D 27 2 R R Câu 10 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A B −1 C D −9 Câu 11 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 Trang 1/4 Mã đề 001 Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) tiếp xúc mặt cầu (S ) B (P) qua tâm mặt cầu (S ) C (P) cắt mặt cầu (S ) D (P) không cắt mặt cầu (S ) Câu 13 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (1; −4) B (−3; 0) C (−1; −4) D (0; −3) Câu 14 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vng cân A,AB = a Biết a Tính thể tích khối lăng trụ ABC.A′ B′C ′ khoảng cách từ A đến mặt phẳng (A′ BC) √ √ a3 a3 a3 a3 A B C D 2 6 √ √ a Câu 15 Cho hình chóp S ABCD có cạnh đáy a đường cao S H Tính góc mặt bên (S DC) mặt đáy A 90o B 30o C 45o D 60o y−6 z+2 x−2 = = Câu 16 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ A 10 C √ D √ B √ 10 53 Câu 17 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực phần ảo 2i C Phần thực là−3 phần ảo −2i D Phần thực −3 phần ảo là−2 Câu 18 Với số phức z, ta có |z + 1|2 A z2 + 2z + B |z|2 + 2|z| + C z · z + z + z + D z + z + Câu 19 Cho hai số phức z1 = + i z2 = − 3i Tính mơ-đun √ √ số phức z1 + z2 D |z1 + z2 | = A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 − 2i (1 − i)(2 + i) Câu 20 Phần thực số phức z = + 2−i + 3i 11 29 29 11 A − B C − D 13 13 13 13 (1 + i)(2 + i) (1 − i)(2 − i) Câu 21 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z = z B z số ảo C z = D |z| = z Câu 22 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A M(2; −3) B Q(−2; −3) C P(−2; 3) D N(2; 3) 2017 + 2i + i Câu 23 Số phức z = có tổng phần thực phần ảo 2−i A -1 B C D Câu 24 Tìm số phức liên hợp số phức z = i(3i + 1) A z = − i B z = −3 − i C z = −3 + i D z = + i Câu 25 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Trang 2/4 Mã đề 001 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 Câu 27 Tập nghiệm bất phương trình log(x − 2) > A (−∞; 3) B (12; +∞) C (3; +∞) D (2; 3) Câu 26 Cho khối nón có đỉnh S , chiều cao thể tích Câu 28 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d = R C d < R D d > R Câu 29 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A 12 B C D Câu 30 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 49 B 48 C 89 D 90 ax + b có đồ thị đường cong hình bên Câu 31 Cho hàm số y = cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (0; 2) B (0; −2) C (−2; 0) D (2; 0) Câu 32 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ B 11 + C 14 D 28 A 18 + Câu 33 Với a số thực dương tùy ý, ln(3a) − ln(2a) B ln C lna D ln(6a2 ) A ln Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | Câu 35 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = + C P = 34 + D P = 26 A P = √ √ √ 42 √ Câu 36 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 √ Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm Q Câu 38 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B |z| = C z số ảo D Phần thực z số âm Trang 3/4 Mã đề 001 √ 2 Mệnh đề Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = √ D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 40 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = −1 B A = C A = + i D A = Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = |z|2 − C P = (|z| − 2)2 D P = (|z| − 4)2 Câu 42 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = C P = B P = D P = 2 Câu 43 Với a số thực dương tùy ý, log5 (5a) A − log5 a B − log5 a C + log5 a D + log5 a − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 44 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ → √ → − → → − → − − −c = − B b ⊥ c C b ⊥ a D → A a = Câu 45 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = B S = −6 C S = D S = −5 Câu 46 Tìm đạo hàm hàm số: y = (x + 1) 1 1 − 3 A (2x) B (x + 1) C 3x(x2 + 1) D x 2 Câu 47 Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 − 5x + m) > log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = (−∞; 4) B S = [6; +∞) C S = (7; +∞) D S = (−∞; 5] Câu 48 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m < −1 B −1 ≤ m ≤ C m > D −1 ≤ m < Câu 49 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A −x + 2y + 2z + = B x − 2y − 2z − = C x + 2y + 2z + = D 3x − 4y + 6z + 34 = Câu 50 Số phức z = − 3i có phần ảo A 3i B −3 C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001