Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Biết F(x) là một nguyên hàm của hàm số f (x) = x cos2x và F( π 3 ) = π √[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 π π x π F( ) = √ Tìm F( ) cos x π π ln π π ln C F( ) = + D F( ) = − 4 4 Câu Biết F(x) nguyên hàm hàm số f (x) = π π ln π π ln A F( ) = − B F( ) = + 4 Câu Hàm số sau khơng có cực trị? A y = x2 C y = cos x B y = x4 + 3x2 + D y = x3 − 6x2 + 12x − Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = −x4 + 3x2 − C y = x − 2x + 3x + D y = x2 − 2x + Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A 4πR3 B πR3 C πR3 D πR3 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C D −6 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = (−∞; ln3) C S = [ -ln3; +∞) D S = [ 0; +∞) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + 2ty = + tz = C x = + 2ty = + tz = − 4t D x = + ty = + 2tz = Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B 4πR3 C πR3 D 6πR3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A K(3; 0; 15) B H(−2; −1; 3) C J(−3; 2; 7) D I(−1; −2; 3) Câu 10 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 21 C 12 D 18 Câu 11 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A M(0 ; ; 2) B Q(4 ; ; 2) C N(1 ; ; 7) D P(4 ; −1 ; 3) Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) √ A (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 B (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 C (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 D (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 Trang 1/4 Mã đề 001 Câu 13 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A −384 B −192 C 384 D 192 Câu 14 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −2 B −6 C −8 D −4 Câu 15 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho 2a3 a3 B 6a3 C 2a3 D A 3 Câu 16 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B −3 C D −2 Câu 17 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 − i B z = −3 + i C z = − i D z = + i 1 25 = + Khi phần ảo z bao nhiêu? Câu 18 Cho số phức z thỏa z + i (2 − i)2 A 17 B −17 C −31 D 31 Câu 19 Với số phức z, ta có |z + 1|2 A z2 + 2z + B z · z + z + z + C |z|2 + 2|z| + D z + z + 2017 (1 + i) Câu 20 Số phức z = có phần thực phần ảo đơn vị? 21008 i A B 21008 C D Câu 21 Tính mơ-đun số phức √ z thỏa mãn z(2 − i) + 13i =√1 √ 34 34 A |z| = 34 B |z| = C |z| = D |z| = 34 3 Câu 22 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B N(2; 3) C M(2; −3) D P(−2; 3) Câu 23 2i, z2 = − i Giá trị biểu √ thức |z1 + z1 z2 | √ √ Cho số phức z1 = + √ B 10 C 10 D 130 A 30 Câu 24 Cho hai √ số phức z1 + z2 √ số phức z1 = + i z2 = − 3i Tính mơ-đun A |z1 + z2 | = 13 B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = Câu 25 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 C −22016 D −21008 + Câu 26 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 210 C 225 D 105 Câu 27 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n3 = (1; 1; 1) C → n1 = (−1; 1; 1) D → n2 = (1; −1; 1) Câu 28 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d > R C d = R D d = Câu 29 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 B C D A Câu 30 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 16π 16 16π A B C D 15 15 Trang 2/4 Mã đề 001 Câu 31 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (1; 2) C (2; +∞) D (−∞; 1) Câu 32 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 C D A B x+1 Câu 33 Tập nghiệm bất phương trình < A (−∞; 1) B (1; +∞) C (−∞; 1] D [1; +∞) Câu 34 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D z Câu 35 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| bằng? thức + |z|2 √ 1 A B C D 2 Câu 36 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm Q C điểm S D điểm R √ Câu 37 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A ≤ |z| ≤ B |z| > C < |z| < D |z| < 2 2 Câu 38 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 A 0; B ; +∞ C ; D ; 4 4 Câu 39 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √ thức P = |z1 | + |z √2 | √ √ B P = 26 C P = D P = + A P = 34 + Câu 41 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = 2016 C P = D P = −2016 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = (|z| − 2)2 D P = |z|2 − Câu 43 Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 − 5x + m) > log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = (−∞; 4) B S = [6; +∞) C S = (7; +∞) D S = (−∞; 5] Câu 44 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 1 209 A B C D 210 105 210 21 Trang 3/4 Mã đề 001 Câu 45 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B m > C −1 ≤ m < D m < −1 Câu 46 Cần chọn người công tác từ tổ có 30 người, số cách chọn D 330 C A330 A 10 B C30 Câu 47 Tìm đạo hàm hàm số: y = (x + 1) 1 1 3 − 2 B (2x) C x D (x + 1) A 3x(x + 1) z x−1 y+2 = = không qua điểm đây? Câu 48 Đường thẳng (∆) : −1 A (−1; −3; 1) B A(−1; 2; 0) C (1; −2; 0) D (3; −1; −1) Câu 49 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−1; 0) C (−∞; 1) D (0; 1) Câu 50 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(−1; 2; −3); R = B I(1; 2; −3); R = C I(1; −2; 3); R = D I(1; 2; 3); R = - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001