Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2, y =[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Hàm √ số sau√đây đồng biến R? A y = x2 + x + − x2 − x + B y = tan x C y = x + 3x + D y = x2 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → → − → − −u | = √3 −u | = A | u | = B | u | = C |→ D |→ Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m > C m < D m ≤ Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (−2; 3; 1) C M ′ (2; −3; −1) D M ′ (2; 3; 1) ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu Cho hàm số y = cx + d A ac < B ad > C bc > D ab < Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −15 C m = −2 D m = 13 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(8; ; 19) B C(20; 15; 7) C C(6; 21; 21) D C(6; −17; 21) Câu Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD)√theo a √ a a B a C D 2a A 2 Câu 10 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B −2 C D −3 Câu 11 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 12 B 18 C 21 D 27 Câu 12 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A B −1 C D −2 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) Trang 1/4 Mã đề 001 cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A I(−1; −2; 3) B H(−2; −1; 3) C J(−3; 2; 7) D K(3; 0; 15) ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (0 ; 3) B (2 ; 0) C (3; ) D (0 ; −2) Câu 14 Cho hàm số y = Câu 15 Tính đạo hàm hàm số y = x 5x A y′ = x ln B y′ = ln C y′ = x.5 x−1 D y′ = x Câu 16 Đạo hàm hàm số y = (2x + 1) tập xác định − − A (2x + 1) ln(2x + 1) B − (2x + 1) − − C 2(2x + 1) ln(2x + 1) D − (2x + 1) − Câu 17 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −9 B C 10 D −10 Câu 18 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? B z − z = 2a C |z2 | = |z|2 D z · z = a2 − b2 A z + z = 2bi Câu 19 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B C -1 D Câu 20 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B −3 + 2i C −3 − 2i D 11 + 2i (1 + i)(2 + i) (1 − i)(2 − i) Câu 21 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z = z B |z| = C z số ảo D z = z − 2i (1 − i)(2 + i) Câu 22 Phần thực số phức z = + 2−i + 3i 11 29 11 29 A B − C − D 13 13 13 13 Câu 23 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B −22016 C −21008 D 21008 Câu 24 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = C P = + i D P = 2i Câu 25 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 26 Đồ thị hàm số có dạng đường cong hình bên? x−3 A y = x4 − 3x2 + B y = x2 − 4x + C y = D y = x3 − 3x − x−1 R4 R4 R4 Câu 27 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C −1 D Trang 2/4 Mã đề 001 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A C D B 24 Câu 29 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ B 14 C 11 + D 28 A 18 + Câu 28 Cho khối nón có đỉnh S , chiều cao thể tích Câu 30 Cho số phức z = + 9i, phần thực số phức z2 A −77 B C 85 D 36 Câu 31 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D Câu 32 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (−∞; 1) B (1; 3) C (0; 2) D (3; +∞) Câu 33 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A B C 15 D 17 √ 2 Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 3√ 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = z+1 Câu 35 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = z Câu 36 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| bằng? thức + |z|2 √ 1 A B C D z Câu 37 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B 2 C D Câu 38 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = C P = 2016 D P = −2016 Câu 39 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 40 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Trang 3/4 Mã đề 001 Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = |z|2 − D P = (|z| − 4)2 Câu 42 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = 2016 B P = C P = −2016 D max T = −a = (4; −6; 2) Phương Câu 43 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = + 2ty = −3tz = −1 + t C x = −2 + 2ty = −3tz = + t B x = + 2ty = −3tz = + t D x = −2 + 4ty = −6tz = + 2t Câu 44 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B C −4 D 2i Câu 45 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A x = B M(1; −2) C M(−2; −4) D x = −2 Câu 46 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−1; 0) C (−∞; 1) D (0; 1) √ Câu 47 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x − 4)2 + (y + 8)2 = B (x + 4)2 + (y − 8)2 = 20 √ 2 C (x − 4) + (y + 8) = 20 D (x + 4)2 + (y − 8)2 = Câu 48 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; −2; 3); R = B I(1; 2; 3); R = C I(1; 2; −3); R = D I(−1; 2; −3); R = π R4 Câu 49 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 − π2 + 16π − π2 + 16π − 16 B C A 16 16 16 Câu 50 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C − log5 a π2 + 15π D 16 D + log5 a - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001