Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai? A a−[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu √Cho hai√ số thực a, bthỏa mãn√ a > b > Kết luận√ sau sai? √ √5 − − 2 A a C a > b eb Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ B m ∈ (0; 2) C m ≥ D m ∈ (−1; 2) A −1 < m < p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < y < −3 C Nếux = y = −3 D Nếu < x < π y > − 4π2 Câu Cho hình chóp S ABCcó cạnh đáy a cạnh bên tích khối chóp là: q b Thể √ √ a2 b2 − 3a2 3a b B VS ABC = A VS ABC = √ 12 √12 a2 3b2 − a2 3ab D VS ABC = C VS ABC = 12 12 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + 2ty = + tz = C x = + ty = + 2tz = D x = + 2ty = + tz = − 4t Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 60a3 C 30a3 D 100a3 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + B y = tan x A y = x−1 C y = sin x D y = x3 − 2x2 + 3x + Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m > C m ≤ D m < Câu Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −1 B C −7 D Câu 10 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A 103 B 310 C C10 D A310 x−2 y−6 z+2 Câu 11 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ A √ B √ C 10 D √ 10 53 Trang 1/4 Mã đề 001 Câu 12 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −2 B −3 C D Câu 13 Tính đạo hàm hàm số y = x 5x A y′ = B y′ = x.5 x−1 C y′ = x ln D y′ = x ln Câu 14 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−∞ ; −2) B (−1 ; 4) C (0 ; +∞) D (−2 ; 0) Câu 15 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (−∞; 3) B Hàm số cho nghịch biến khoảng (1; 4) C Hàm số cho đồng biến khoảng (1; 4) D Hàm số cho nghịch biến khoảng (3; +∞) Câu 16 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −2 B −4 C −8 D −6 Câu 17 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 i B (1 + i)2018 = 21009 C (1 + i)2018 = 21009 i D (1 + i)2018 = −21009 Câu 18 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 19 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B −3 C D − 2i (1 − i)(2 + i) + Câu 20 Phần thực số phức z = 2−i + 3i 29 29 11 11 A B − C − D 13 13 13 13 Câu 21 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 Câu 22 Cho số phức z thỏa mãn √ = 6z − 25i √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w A B 29 C 13 D Câu 23 Với số phức z, ta có |z + 1|2 A z · z + z + z + B z + z + C |z|2 + 2|z| + Câu 24 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số phức B Mô-đun số phức z số thực không âm D Mô-đun số phức z số thực Câu 25 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D z2 + 2z + D Trang 2/4 Mã đề 001 Câu 26 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 210 B 225 C 105 D 30 x2 − 16 x2 − 16 Câu 27 Có số nguyên x thỏa mãn log3 < log7 ? 343 27 A 92 B 184 C 193 D 186 Câu 28 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 16π 16 16π A B C D 15 15 Câu 29 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 14 B 11 + C 28 D 18 + 2x + Câu 30 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 1 2 A y = − B y = − C y = D y = 3 3 Câu 31 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ−1 B y′ = πxπ C y′ = xπ−1 D y′ = π−1 x π Câu 32 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 A a B a C a D 2a3 Câu 33 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 D A B C Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 B T = C T = D T = 13 A T = 13 3 √ Câu 35 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm N √ Câu 36 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a + b + c C a2 + b2 + c2 − ab − bc − ca D a2 + b2 + c2 + ab + bc + ca Câu 37 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số ảo B |z| = C Phần thực z số âm D z số thực không dương Trang 3/4 Mã đề 001 √ Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ A Pmax = B Pmax = C Pmax = Câu 39 Cho số phức z thỏa mãn z số thực ω = biểu thức √ M = |z + − i| √ B A 2 Giá trị lớn biểu thức √ 10 D Pmax = z số thực Giá trị lớn + z2 C D Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = B P = 34 + C P = + D P = 26 Câu 41 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm R C điểm P D điểm Q 2z − i Câu 42 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| > B |A| < C |A| ≤ D |A| ≥ Câu 43 Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x B y′ = 2023 x ln x C y′ = 2023 x ln 2023 D y′ = x.2023 x−1 Câu 44 Đường cong hình bên đồ thị hàm số đây? A y = −x3 + 3x2 + B y = x3 − 3x2 + C y = x4 − 2x2 + D y = −x4 + 2x2 + √ Câu 45 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường tròn có phương trình: √ √ A (x + 4)2 + (y − 8)2 = B (x − 4)2 + (y + 8)2 = C (x − 4)2 + (y + 8)2 = 20 D (x + 4)2 + (y − 8)2 = 20 Câu 46 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 47 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 C V = 2a3 D V = 3a3 A V = a3 B V = Câu 48 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (−1; 0) C (1; +∞) D (0; 1) Câu 49 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 209 B C D A 210 210 105 21 Câu 50 Tìm đạo hàm hàm số: y = (x + 1) 1 1 3 − 2 A 3x(x + 1) B (2x) C x D (x + 1) - - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 001