1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (779)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 125,34 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm số y = 1 x là đúng? A Hàm[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 đúng? x B Hàm số nghịch biến R D Hàm số đồng biến R Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến (0; +∞) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 6; 0) B (−2; 0; 0) C (0; 2; 0) D (0; −2; 0) Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −2 C m = −15 D m = 13 √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? π 10π D V = A V = B V = π C V = 3 π π x π F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = − C F( ) = + D F( ) = − 4 4 4 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = [ -ln3; +∞) C S = (−∞; 2) D S = (−∞; ln3) Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh nó√bằng A πRl B 2π l2 − R2 C 2πRl D π l2 − R2 Câu Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A 310 B C10 C A310 D 103 x−2 y x−1 = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B (2 ; −3 ; 1) C ( ; − ; ) D ( ; − ; ) 3 3 3 3 Câu 10 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : Câu 11 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho 2a3 a3 A B 2a3 C D 6a3 3 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 12 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường trịn (C) √ √ A r = B r = C r = D r = Trang 1/5 Mã đề 001 Câu 13 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 14 55 220 R2 R2 Câu 14 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A B −9 C −1 D Câu 15 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 40 B 30 C 60 D 50 Câu 16 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 22π 7π 512π A V = B V = C V = D V = 15 − 2i (1 − i)(2 + i) Câu 17 Phần thực số phức z = + 2−i + 3i 29 11 29 11 B − C D A − 13 13 13 13 Câu 18 Cho hai √ số phức z1 = + i z2 = − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 19 Những số sau vừa số thực vừa số ảo? A Khơng có số B C Chỉ có số D C.Truehỉ có số Câu 20 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực −3 phần ảo là−2 B Phần thực là−3 phần ảo −2i C Phần thực là3 phần ảo D Phần thực phần ảo 2i Câu 21 Tính mơ-đun số phức z thỏa mãn z(2 − i) + 13i =√1 √ √ 34 34 B |z| = 34 C |z| = D |z| = A |z| = 34 3 25 1 Câu 22 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −31 B 17 C 31 D −17 Câu 23 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −10 C −9 D 10 Câu 24 Tìm số phức liên hợp số phức z = i(3i + 1) B z = −3 + i C z = + i A z = −3 − i D z = − i Câu 25 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = −7 − 7i C w = − 3i D w = + 7i Câu 26 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F(x) = f ′ (x) + C B F(x) = f ′ (x) C F ′ (x) + C = f (x) D F ′ (x) = f (x) R2 Câu 27 Tính tích phân I = xe x dx A I = 3e2 − 2e B I = e2 C I = −e2 D I = e Câu 28 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = C (x − 2)2 + y2 + z2 = D (x + 2)2 + y2 + z2 = Trang 2/5 Mã đề 001 R8 R4 R4 Câu 29 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R8 R8 A f (x) = −5 B f (x) = R4 R4 C [4 f (x) − 2g(x)] = −2 D [ f (x) + g(x)] = 10 R1 R R1 R1 Câu 30 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A 12 B −8 C D −3 Câu 31 Tìm hàm số F(x) khơng ngun hàm hàm số f (x) = sin2x A F(x) = −cos2 x B F(x) = sin2 x C F(x) = − cos2x D F(x) = −cos2x −−→ Câu 32 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (3; 1; 1) B (−1; −1; −3) C (1; 1; 3) D (3; 3; −1) Câu 33 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 4; 4) B C(1; 0; 2) C C(−1; −4; 4) D C(−1; 0; −2) √ 2 Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 35 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 10 B 15 C D Câu 36 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 37 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = D A = + i = Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ B C D A √ 2 √ Câu 39 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a + b + c B a2 + b2 + c2 + ab + bc + ca C a2 + b2 + c2 − ab − bc − ca D z số thực Giá trị lớn Câu 40 Cho số phức z thỏa mãn z số thực ω = + z2 biểu thức √ M = |z + − i| √ A 2 B C D Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ A P = 26 B P = C P = 34 + D P = + Câu 42 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A 13 B C D Trang 3/5 Mã đề 001 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương →         x = + 2t x = −1 + 2t x = − 2t x = + 2t             y = −2 + 3t y = + 3t y = −2 + 3t y = −2 − 3t A  B  C  D           z = − 5t  z = −4 − 5t  z = + 5t  z = − 5t Câu 44 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A B ln + 6π C π cos x F(− ) = π Khi giá trị sin x + cos x 3π ln + D 6π ln + 5 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Câu 46 Chọn mệnh đề mệnh đề sau: R R e2x 2x +C A sin xdx = cos x + C B e dx = R R (2x + 1)3 x x C dx =5 + C D (2x + 1) dx = + C Câu 47 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 48 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 2mn + n + A log2 2250 = B log2 2250 = n m 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n Câu 49 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = (x − 2x)dx + (x2 − 2x)dx B 1 R3 R2 R3 C R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = − D R3 R2 (x2 − 2x)dx + R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − Câu 50 Biết a, b ∈ Z cho A |x2 − 2x|dx R B (x2 − 2x)dx (x + 1)e2x dx = ( ax + b 2x )e + C Khi giá trị a + b là: C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 08:02

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN