1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (716)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 125,78 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính tổng tất cả các nghiệm của phương trình 6 22x − 13 6x + 6 32x = 0 A[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 B C −6 D A Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 3a b A VS ABC = B VS ABC = 12 √ 12 √ a2 3b2 − a2 3ab2 D VS ABC = C VS ABC = 12 12 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = − 4t B x = + ty = + 2tz = C x = + 2ty = + tz = D x = + 2ty = + tz = Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ≥ B m ∈ (0; 2) C −1 < m < D m ∈ (−1; 2) Câu Hàm số sau khơng có cực trị? A y = x2 C y = x3 − 6x2 + 12x − B y = x4 + 3x2 + D y = cos x Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x −1+ B y = +1− A y = ln ln 5 ln ln x x C y = − D y = + ln ln 5 ln Câu Hình nón có bán kính đáy √ R, đường sinh l diện√tích xung quanh A 2πRl B π l2 − R2 C 2π l2 − R2 D πRl Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B 4πR3 C 6πR3 D πR3 Câu Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để 2 phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 10 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho 2a3 a3 C D 2a3 A 6a3 B 3 Câu 11 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 18 B 27 C 21 D 12 Trang 1/5 Mã đề 001 Câu 12 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 13 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường √ √ tròn (C) A r = B r = C r = D r = Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) tiếp xúc mặt cầu (S ) B (P) cắt mặt cầu (S ) C (P) qua tâm mặt cầu (S ) D (P) không cắt mặt cầu (S ) Câu 15 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 22π 7π 512π A V = B V = C V = D V = 15 Câu 16 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 220 55 14 Câu 17 Những số sau vừa số thực vừa số ảo? A C.Truehỉ có số B C Chỉ có số D Khơng có số Câu 18 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A M(2; −3) B P(−2; 3) C Q(−2; −3) D N(2; 3) Câu 19 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A 10 B C −10 D −9 Câu 20 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi √ mơ-đun số phức w = 6z − 25i B C 29 D 13 A !2016 !2018 1−i 1+i + Câu 21 Số phức z = 1−i 1+i A B C −2 D + i − 2i (1 − i)(2 + i) Câu 22 Phần thực số phức z = + 2−i + 3i 29 11 11 29 A − B − C D 13 13 13 13 25 1 Câu 23 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 31 B −17 C −31 D 17 Câu 24 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = + i B P = 2i C P = D P = Câu 25 Với số phức z, ta có |z + 1|2 A z2 + 2z + B z · z + z + z + C |z|2 + 2|z| + D z + z + Câu 26 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (3; 1; 4) B (3; −1; −4) C (−3; −1; 4) D (−3; −1; −4) R3 Câu 27 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A ( ; 1) B (−1; 0) C (0; ) D (1; 2) 2 Trang 2/5 Mã đề 001 Câu 28 Cho hàm số f (x) liên tục R A B R4 f (x) = 10, C R4 f (x) = Tích phân D Câu 29 Tìm hàm số F(x) khơng ngun hàm hàm số f (x) = sin2x A F(x) = sin2 x B F(x) = −cos2 x C F(x) = −cos2x Câu 30 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x B F(x) = e x + C F(x) = e2x R3 f (x) D F(x) = − cos2x D F(x) = e x+1 Câu 31 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = 2 C (x + 2) + y + z = D (x + 2)2 + y2 + z2 = Câu 32 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z + = B 3x − 2y + z − = C 3x − 2y + z − 12 = D 3x + 2y + z − = Câu 33 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x + y − z − = B 6x + y − z − = C x + y − z + = D x − y + z + = = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp ! ! sau đây? ! 9 A ; B ; C 0; D ; +∞ 4 4 √ Câu 35 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm P √ 2 Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.√ B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 z Câu 37 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? 1√+ |z|2 1 A B C D Câu 38 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = 2016 B P = −2016 C P = D P = z Câu 39 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C 2 D Trang 3/5 Mã đề 001 Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu thức P = |z1 | + |z2 | √ √ √ √ B P = + C P = 34 + D P = A P = 26 Câu 41 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a + 2b √ √ √ √ A 10 B C D 15 Câu 42 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = D A = + i Câu 43 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = −2x4 + 4x2 C y = −x4 + 2x2 + D y = x3 − 3x2 Câu 44 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 45 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 46 Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = 14 B R = C R = D R = 15 d Câu 47 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C 2a D a Câu 48 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = 2πRl + 2πR2 C S = πRl + 2πR2 D S = πRl + πR2 Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 21 11 17 10 31 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 √ Câu 50 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình với x ∈ (4; +∞) D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 08:01

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN