Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho số thực dươngm Tính I = m∫ 0 dx x2 + 3x + 2 theo m? A I = ln( 2m + 2[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho số thực dươngm Tính I = Rm x2 dx theo m? + 3x + m+2 m+2 m+1 2m + ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( m+2 m+1 2m + m+2 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; −17; 21) B C(8; ; 19) C C(6; 21; 21) D C(20; 15; 7) Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 5; 0) C (0; 0; 5) D (0; 1; 0) Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m > C m > 2e D m ≥ e−2 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 C D −6 A B Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A −1 < m < B m ∈ (−1; 2) C m ∈ (0; 2) D m ≥ Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x2 − 2x + B y = x3 C y = x − 2x + 3x + D y = −x4 + 3x2 − x−2 y−6 z+2 Câu Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = d2 : −2 x−4 y+1 z+2 = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng cách −2 từ điểm M(1; 1; 1) đến (P) √ A 10 B √ C √ D √ 10 53 Câu 10 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = + t B x = − ty = tz = + t C x = + ty = tz = − t D x = + 2ty = 2tz = + t Câu 11 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A a3 B 2a3 C 6a2 D 6a3 1 Câu 12 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C D 16 Trang 1/5 Mã đề 001 Câu 13 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vng cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 6 2 Câu 14 Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D Câu 15 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A C10 B 310 C 103 D A310 Câu 16 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; −2; 3) −n = (1; −2; −1) −n = (1; 3; −2) −n = (1; 2; 3) A → B → C → D → Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D (1 + i)(2 + i) (1 − i)(2 − i) Câu 18 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? D |z| = A z = z B z số ảo C z = z Câu 19 Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi √ mơ-đun số phức w = 6z − 25i A 13 B C 29 D Câu 20 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm C Mô-đun số phức z số phức B Mô-đun số phức z số thực D Mô-đun số phức z số thực dương Câu 21 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A N(2; 3) B M(2; −3) C Q(−2; −3) D P(−2; 3) Câu 22 Tính mơ-đun số phức z thỏa mãn z(2 − i) + 13i√= √ √ 34 34 D |z| = A |z| = 34 B |z| = 34 C |z| = 3 Câu 23 2i, z2 = − i Giá trị của√biểu thức |z1 + z1 z2 | √ Cho số phức z1 = + √ √ A 30 B 10 C 130 D 10 Câu 24 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −3 C D −7 − 2i (1 − i)(2 + i) Câu 25 Phần thực số phức z = + 2−i + 3i 29 29 11 11 A B − C D − 13 13 13 13 Câu 26 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? b Rb A a f (2x + 3) = F(2x + 3) a Ra B b f (x) = F(b) − F(a) Rb C a k · f (x) = k[F(b) − F(a)] Trang 2/5 Mã đề 001 D Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) R0 Câu 27 Giá trị −1 e x+1 dx A − e B e − C −e D e Câu 28 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx − cosx + C B F(x) = −sinx + cosx + C C F(x) = sinx + cosx + C D F(x) = sinx − cosx + C Câu 29 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x+1 B F(x) = e2x C F(x) = e x + D F(x) = e x Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; 0; −2) B C(−1; −4; 4) C C(1; 4; 4) D C(1; 0; 2) Câu 31 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (−3; −1; 4) B (3; 1; 4) C (−3; −1; −4) D (3; −1; −4) Câu 32 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 1 2 2 A F(x) = − (2 − e x ) B F(x) = e x + C F(x) = (e x + 5) D F(x) = − e x + C 2 2 Câu 33 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x − = B y − = C x + y + z − = D z − = Câu 34 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? B C A 2 Câu 35 Cho số phức z , cho z số thực w = |z| bằng? 1√+ |z|2 A D z số thực Tính giá trị biểu + z2 thức B C D Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = + C P = 34 + D P = A P = 26 Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ C D A √ B 2 √ Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm Q Trang 3/5 Mã đề 001 + z + z2 Câu 39 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 Câu 40 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 41 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2 = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 1 9 B 0; C ; D ; A ; +∞ 4 4 Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − Câu 43 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −2x4 + 4x2 B y = x3 − 3x2 C y = −x4 + 2x2 + Câu 44 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D y = −x4 + 2x2 D Câu 45 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 27 29 25 23 A B C D 4 4 Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 47 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a > a x > ay ⇔ x > y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x = ay ⇔ x = y Câu 48 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (−1; 1) C (1; 5) D (3; 5) Câu 49 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 8π C 12π D 6π Câu 50 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > m < − C m > m < −1 D m > Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001