Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = ax + b cx + d có đồ thị như hình vẽ bên Kết luận nào sau[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu Cho hàm số y = cx + d A ad > B ac < C bc > D ab < Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 30a3 B 100a3 C 60a3 D 20a3 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m ≤ C m ≥ D m > √ ′ ′ ′ ′ Câu Cho lăng trụ ABC.A lăng trụ cho là: √ B3 C có đáy a, AA3 = 3a Thể tích khối √ A 3a B 3a C a D 3a3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; −17; 21) B C(6; 21; 21) C C(20; 15; 7) D C(8; ; 19) √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H3) B (H2) C (H1) D (H4) + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A ∀m ∈ R B < m , C m < D −4 < m < R1 √3 Câu Tính I = 7x + 1dx 21 20 60 A I = B I = C I = 28 Câu Họ tất nguyên hàm hàm số f (x) = 5x + cos x A 5x5 + sin x + C B x5 − sin x + C C 5x5 − sin x + C D I = 45 28 D x5 + sin x + C Câu 10 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A −2 B C −1 D − → Câu 11 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 45 B 30 C 60◦ D 90◦ Câu 12 Tập nghiệm bất phương trình 52x+3 > −1 A (−3; +∞) B (−∞; −3) C ∅ 1 Câu 13 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A 16 B C D R Có giá trị nguyên D Trang 1/5 Mã đề 001 √ Câu 14 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 1; 3, 3)· B (3, 7; 3, 9)· C (3, 3; 3, 5)· D (3, 5; 3, 7)· Câu 15 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 13 B 17 C 18 D 20 R6 R6 R6 Câu 16 Nếu f (x) = g(x) = −4 ( f (x) + g(x)) A −2 1 B −6 C D Câu 17 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B z − z = 2a C z + z = 2bi D |z2 | = |z|2 Câu 18 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −7 C D −3 Câu 19 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 B −22016 C −21008 + D 21008 Câu 20 Với số phức z, ta có |z + 1|2 A z + z + B z · z + z + z + Câu 21 Số phức z = A -1 C |z|2 + 2|z| + + 2i + i2017 có tổng phần thực phần ảo 2−i B C Câu 22 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C Câu 23 Tính √ mơ-đun số phức z√thỏa mãn z(2 − i) + 13i = 34 34 A |z| = B |z| = C |z| = 34 3 D z2 + 2z + D D D |z| = √ 34 z2 Câu 24 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 13 B C 11 D (1 + i)(2 − i) Câu 25 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = R8 R4 R4 Câu 26 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R4 R4 A [4 f (x) − 2g(x)] = −2 B [ f (x) + g(x)] = 10 R8 R8 C f (x) = −5 D f (x) = R2 Câu 27 Tính tích phân I = xe x dx A I = 3e2 − 2e B I = −e2 C I = e D I = e2 R2 Câu 28 Tích phân I = (2x − 1) có giá trị bằng: A B C D −−→ Câu 29 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (3; 1; 1) B (1; 1; 3) C (−1; −1; −3) D (3; 3; −1) Trang 2/5 Mã đề 001 Câu 30 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A z − = B y − = C x − = D x + y + z − = Câu 31 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A −2 B C D R1 R R1 R1 Câu 32 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A B −8 C 12 D −3 R0 Câu 33 Giá trị −1 e x+1 dx A e B −e C e − D − e Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q B điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm S Câu 35 Cho số phức z , cho z số thực w = D điểm R z số thực Tính giá trị biểu + z2 |z| bằng? + |z|2 √ 1 B C A Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 Câu 37 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 A A = B A = C A = −1 thức D D = Tính A = z21 +z22 +z23 D A = + i Câu 38 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 √ Câu 39 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 − ab − bc − ca B a2 + b2 + c2 + ab + bc + ca C D a + b + c Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 A 0; B ; +∞ C ; D ; 4 4 z số thực Giá trị lớn Câu 41 Cho số phức z thỏa mãn z số thực ω = + z2 biểu thức √ M = |z + − i| √ A 2 B C D Câu 42 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = −2016 C P = 2016 D P = d Câu 43 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ cạnh BC, S A = S C √ A a B a C a D 2a Câu 44 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 12a3 B 6a3 C 4a3 D 3a3 Trang 3/5 Mã đề 001 Câu 45 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B C ln D − ln Câu 46 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (3; 5) C (1; 5) D (−3; 0) Câu 47 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B m > −2 C −4 ≤ m ≤ −1 D −3 ≤ m ≤ Câu 48 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 49 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = ln a C P = D P = + 2(ln a)2 Câu 50 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + πR2 B S = 2πRl + 2πR2 C S = πRl + 2πR2 D S = πRh + πR2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001