Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cá[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ a 2a 5a 3a B C √ D √ A 5 Câu Kết đúng? R sin3 x + C A sin2 x cos x = − R sin3 x C sin2 x cos x = + C B R sin2 x cos x = −cos2 x sin x + C D R sin2 x cos x = cos2 x sin x + C Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; −5; 0) C (0; 1; 0) D (0; 0; 5) Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m ≤ C m ≥ D m > Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (−2; −1; 2) C (−2; 1; 2) D (2; −1; 2) Câu R6 Công thức sai? A sin x = − cos x + C R C a x = a x ln a + C R B cos x = sin x + C R D e x = e x + C Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = +1− B y = −1+ ln ln 5 ln ln x x C y = − D y = + ln ln 5 ln Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) √ B (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 A (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 C (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 D (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 Câu 10 Tập nghiệm bất phương trình 52x+3 > −1 A ∅ B R C (−3; +∞) Câu 11 Tính đạo hàm hàm số y = x A y′ = x.5 x−1 B y′ = x ln C y′ = 5x ln D (−∞; −3) D y′ = x Câu 12 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −3 B C −2 D Trang 1/5 Mã đề 001 Câu 13 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 48 B 64 C 76 D 56 Câu 14 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −6 B −4 C −8 D −2 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 15 Cho số phức zthỏa mãn i + trịn (C) √ Tính bán kính rcủa đường tròn (C) √ A r = B r = C r = D r = y x−1 x−2 Câu 16 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A (2 ; −3 ; 1) B ( ; − ; ) C ( ; − ; ) D ( ; − ; ) 3 3 3 3 Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D − 2i (1 − i)(2 + i) Câu 18 Phần thực số phức z = + 2−i + 3i 11 29 11 29 A − B − C D 13 13 13 13 !2016 !2018 1−i 1+i + Câu 19 Số phức z = 1−i 1+i A + i B C −2 D 2(1 + 2i) Câu 20 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C D 13 Câu 21 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A N(2; 3) B Q(−2; −3) C M(2; −3) D P(−2; 3) z Câu 22 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ B 11 C D 13 A Câu 23 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = C P = D P = + i Câu 24 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B C −3 D Câu 25 Tính mơ-đun số phức z thỏa mãn z(2 − i) + 13i =√1 √ √ 34 34 A |z| = 34 B |z| = 34 C |z| = D |z| = 3 Câu 26 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z − = B −2x + y − z + = C 2x + y − z − = D −2x + y − z + = Câu 27 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = B I = C I = D I = 10 Trang 2/5 Mã đề 001 Câu 28 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân bằng: A −2024 B 2024 C 2025 D R2 −1 f ′ (x) Câu 29 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A y − = B x + y + z − = C z − = D x − = Câu 30 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A N(4; 2; 1) B P(3; 1; 3) C M(−2; 1; −8) D Q(1; 2; −5) Câu 31 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 4; 4) B C(−1; 0; −2) C C(1; 0; 2) D C(−1; −4; 4) R1 Câu 32 Tích phân e−x dx e−1 1 B C D e − A − e e e R + lnx dx(x > 0) Câu 33 Nguyên hàm x 1 A x + ln2 x + C B x + ln2 x + C C ln2 x + lnx + C D ln2 x + lnx + C 2 Câu 34 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 35 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B C 15 D 10 Câu 36 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm Q Câu 37 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| > B |A| ≤ C điểm P D điểm R 2z − i Mệnh đề sau đúng? + iz C |A| ≥ D |A| < Câu 38 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | √ Câu 39 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A ≤ |z| ≤ B < |z| < C |z| > D |z| < 2 2 + z + z2 Câu 40 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 3 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 2016 2015 Câu 41 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z +z +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = −2016 B P = C P = D P = 2016 Trang 3/5 Mã đề 001 √ √ √ 42 √ + 3i+ 15 Mệnh đề đúng? Câu 42 Cho số phức z thỏa mãn − 5i |z| = z B < |z| < C < |z| < D < |z| < A < |z| < 2 Câu 43 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A ln + 6π B 3π ln + C cos x π F(− ) = π Khi giá trị sin x + cos x 6π ln + 5 D 6π d Câu 44 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A 2a B a C a D a Câu 45 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 6π B 8π C 12π D 10π Câu 46 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + n 2mn + 2n + D log2 2250 = m 3mn + n + n 2mn + n + C log2 2250 = n B log2 2250 = A log2 2250 = Câu 47 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = B R = 15 C R = 14 D R = √ Câu 48 Tính đạo hàm hàm số y = log4 x2 − A y′ = x 2(x2 − 1) ln B y′ = x (x2 − 1) ln C y′ = x (x2 − 1)log4 e D y′ = √ x2 − ln Câu 49 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 250π 400π 125π 500π A B C D 9 Câu 50 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 4a3 B 3a3 C 9a3 D 6a3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001