Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P) z[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = − 4t B x = + 2ty = + tz = C x = + ty = + 2tz = D x = + 2ty = + tz = √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H2) C (H3) D (H1) Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 6πR3 C 2πR3 D 4πR3 √ ′ ′ ′ ′ Câu Cho lăng trụ ABC.A lăng trụ cho là: √ B3 C có đáy a, AA = 3a Thể tích khối √ A a B 3a C 3a D 3a3 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 C −6 D A B Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(6; 21; 21) C C(6; −17; 21) D C(20; 15; 7) A C(8; ; 19) R1 √3 Câu Tính I = 7x + 1dx 60 20 21 45 A I = B I = C I = D I = 28 28 Câu Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; −2; 3) −n = (1; 3; −2) −n = (1; 2; 3) −n = (1; −2; −1) A → B → C → D → Câu 10 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 6a3 B 6a2 C a3 D 2a3 Câu 11 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 12 C 21 D 18 Câu 12 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A −192 B 384 C −384 D 192 Câu 13 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (1; 4) B Hàm số cho đồng biến khoảng (1; 4) Trang 1/5 Mã đề 001 C Hàm số cho nghịch biến khoảng (3; +∞) D Hàm số cho đồng biến khoảng (−∞; 3) Câu 14 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (1; −4) B (−3; 0) C (−1; −4) D (0; −3) Câu 15 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Câu 16 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 48 B 64 C 76 D 56 Câu 17 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −7 − 7i B w = + 7i C w = −3 − 3i D w = − 3i Câu 18 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B −1 ≤ m ≤ C m ≥ m ≤ D ≤ m ≤ √ Câu 19 Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi mơ-đun số phức√w = 6z − 25i A B C 13 D 29 Câu 20 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B N(2; 3) C M(2; −3) D P(−2; 3) + 2i + i2017 có tổng phần thực phần ảo 2−i B C -1 D 4(−3 + i) (3 − i)2 Câu 22 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = 48 B |w| = 85 C |w| = D |w| = Câu 21 Số phức z = A Câu 23 Cho hai số phức z1 = + i z2 = − 3i Tính mơ-đun √ √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = z2 Câu 24 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 11 B C 13 D Câu 25 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 B −21008 + C −22016 D 21008 Câu 26 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = 2 C (x − 2) + y + z = D (x + 2)2 + y2 + z2 = Câu 27 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ A f (x)dx = √ + C B f (x) = 2x + + C 2x + R R √ 1√ C f (x)dx = 2x + + C D f (x)dx = 2x + + C R + lnx Câu 28 Nguyên hàm dx(x > 0) x 1 A x + ln2 x + C B x + ln2 x + C C ln2 x + lnx + C D ln2 x + lnx + C 2 R2 Câu 29 Tính tích phân I = xe x dx A I = e2 B I = 3e2 − 2e C I = e D I = −e2 Trang 2/5 Mã đề 001 Câu 30 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? A Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục R a hồnh tính theo cơng thức S = F(b) − F(a) B b f (x) = F(b) − F(a) b Rb C a f (2x + 3) = F(2x + 3) a Rb D a k · f (x) = k[F(b) − F(a)] Câu 31 Hàm số F(x) = sin(2023x) nguyên hàm hàm số cos(2023x) B f (x) = −2023cos(2023x) A f (x) = − 2023 C f (x) = cos(2023x) D f (x) = 2023cos(2023x) Câu 32 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = D I = 10 Câu 33 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 4; 4) B C(−1; 0; −2) C C(1; 0; 2) D C(−1; −4; 4) Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 C P = (|z| − 4)2 D P = (|z| − 2)2 B P = |z|2 − A P = |z|2 − Câu 36 Cho số phức z (không phải số thực, số ảo) thỏa mãn + z + z2 số thực − z + z2 Khi mệnh đề sau đúng? B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 Câu 37 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ B C D A 13 Câu 38 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q B điểm R bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm P D điểm S Câu 39 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 97 85 A T = C T = 13 D T = B T = 13 3 Câu 40 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 + · · · + z2017 Tính giá trị biểu thức P = z2017 + z2017 2015 + z2016 A P = −2016 B P = C P = D P = 2016 √ 2 Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Trang 3/5 Mã đề 001 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 42 Cho số phức z , cho z số thực w = thức |z| bằng? + |z|2 √ B A z số thực Tính giá trị biểu + z2 C D Câu 43 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + Câu 44 Biết π R2 B y = −x4 + 2x2 C y = −2x4 + 4x2 D y = x3 − 3x2 C − ln D ln sin 2xdx = ea Khi giá trị a là: A B Câu 45 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + πR2 B S = πRh + πR2 C S = πRl + 2πR2 D S = 2πRl + 2πR2 d Câu 46 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ B a C 2a D a A a Câu 47 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 3x Câu 48 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = −2 B m = C m = D Không tồn m Câu 49 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 Câu 50 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001