Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính tổng tất cả các nghiệm của phương trình 6 22x − 13 6x + 6 32x = 0 A[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính tổng tất nghiệm phương trình 6.2 − 13.6 + 6.3 = 13 B C −6 D A Câu Số nghiệm phương trình x + 5.3 x − = A B C D 2x Câu R3 Công thức sai? A R a x = a x ln a + C C sin x = − cos x + C x 2x R B R cos x = sin x + C D e x = e x + C √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H1) C (H3) D (H4) Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? + 2x x+1 C < m , D m < √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? 10π π A V = B V = C V = π D V = 3 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 600 B 450 C 360 D 300 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = → − → − −u | = √3 D |→ A | u | = B | u | = C |→ A −4 < m < B ∀m ∈ R Câu Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 76 B 56 C 48 D 64 Câu 10 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−1; −4) B (−3; 0) C (1; −4) D (0; −3) Câu 11 Tập nghiệm bất phương trình 52x+3 > −1 A (−∞; −3) B ∅ C R D (−3; +∞) Câu 12 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −7 B −1 C D Câu 13 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A A310 B 103 C 310 D C10 Câu 14 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (1; 4) B Hàm số cho nghịch biến khoảng (3; +∞) C Hàm số cho nghịch biến khoảng (1; 4) D Hàm số cho đồng biến khoảng (−∞; 3) Trang 1/5 Mã đề 001 x−2 y x−1 = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B ( ; − ; ) C ( ; − ; ) D (2 ; −3 ; 1) 3 3 3 3 R6 R6 R6 Câu 16 Nếu f (x) = g(x) = −4 ( f (x) + g(x)) Câu 15 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : A −6 1 B C D −2 4(−3 + i) (3 − i) Câu 17 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ √ − 2i A |w| = 48 B |w| = C |w| = D |w| = 85 Câu 18 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B −3 − 10i C −3 − 2i D 11 + 2i Câu 19 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A N(2; 3) B Q(−2; −3) C P(−2; 3) D M(2; −3) (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i A B C D 21008 2(1 + 2i) Câu 21 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A 13 B C D Câu 20 Số phức z = Câu 22 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A |z2 | = |z|2 B z · z = a2 − b2 C z − z = 2a D z + z = 2bi Câu 23 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B −7 C D Câu 24 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B C 10 D −9 2017 + 2i + i Câu 25 Số phức z = có tổng phần thực phần ảo 2−i A B C D -1 R1 R R1 R1 Câu 26 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A 12 B C −3 D −8 Câu 27 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = sinx + cosx + C B F(x) = −sinx + cosx + C C F(x) = sinx − cosx + C D F(x) = −sinx − cosx + C Câu 28 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F(x) = f ′ (x) B F(x) = f ′ (x) + C C F ′ (x) = f (x) D F ′ (x) + C = f (x) R4 R4 R3 Câu 29 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 4; 4) B C(−1; 0; −2) C C(1; 0; 2) D C(−1; −4; 4) Câu 31 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z + = B 3x − 2y + z − = C 3x − 2y + z − 12 = D 3x + 2y + z − = Trang 2/5 Mã đề 001 Câu 32 Tìm nguyên hàm hàm số f (x) = √ A R √ f (x)dx = 2x + + C C R f (x) = √ 2x + + C 2x + R + C B f (x)dx = √ 2x + R 1√ D f (x)dx = 2x + + C R + lnx dx(x > 0) x 1 A x + ln2 x + C B x + ln2 x + C C ln2 x + lnx + C D ln2 x + lnx + C 2 √ Câu 34 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a2 + b2 + c2 + ab + bc + ca C a + b + c D a2 + b2 + c2 − ab − bc − ca Câu 33 Nguyên hàm Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm P C điểm R Câu 36 Cho số phức z thỏa mãn z số thực ω = biểu thức √ M = |z + − i| B A 2 C √ D điểm Q z số thực Giá trị lớn + z2 D = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn ! số phức thuộc tập hợp ! sau đây? ! ! 9 A ; +∞ B ; C ; D 0; 4 4 Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − Câu 38 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A Phần thực z số âm B z số ảo C |z| = D z số thực không dương Câu 39 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 40 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C 13 D Câu 41 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 85 97 A T = 13 B T = 13 C T = D T = 3 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = |z|2 − C P = (|z| − 4)2 D P = (|z| − 2)2 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = 0.√ A R = 14 B R = 15 C R = D R = Trang 3/5 Mã đề 001 Câu 44 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ A 6a3 √ B 3a3 √ C 9a3 √ D 4a3 Câu 45 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 6π B 32π C 31π D 33π √ 2x − x2 + có số đường tiệm cận đứng là: Câu 46 Đồ thị hàm số y = x2 − A B C Câu 47 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A ln + 6π B 6π ln + 5 C D π cos x F(− ) = π Khi giá trị sin x + cos x 3π ln + D 6π Câu 48 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ 250π A √ 125π B √ 500π C √ 400π D Câu 49 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −10 C m = m = −16 D m = √ Câu 50 Tính đạo hàm hàm số y = log4 x2 − A y′ = √ x2 − ln B y′ = 2(x2 x − 1) ln C y′ = (x2 x − 1)log4 e D y′ = (x2 x − 1) ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001