Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến t[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = xe A m ≥ e−2 B m > e2 C m > −x + mx đồng biến R D m > 2e Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = + B y = +1− ln 5 ln ln x x C y = − D y = −1+ ln ln 5 ln ln √ ′ Câu Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA = 3a Thể tích khối √ lăng trụ cho là: √ A 3a3 B a3 C 3a3 D 3a3 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m ≥ C m < D m > Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π B 3π C √ A D 3π 3 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a a 3a 5a A √ B √ C D 5 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 4πR3 C πR3 D 2πR3 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = x3 − 2x2 + 3x + x−1 C y = sin x D y = tan x Câu Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −2 B −6 C −4 D −8 Câu 10 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 40 B 30 C 50 D 60 Câu 11 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−1; −4) B (1; −4) C (0; −3) D (−3; 0) Câu 12 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Trang 1/5 Mã đề 001 Câu 13 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A M(0 ; ; 2) B N(1 ; ; 7) C P(4 ; −1 ; 3) D Q(4 ; ; 2) Câu 14 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 18 B 12 C 27 D 21 √ Câu 15 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 5; 3, 7)· B (3, 7; 3, 9)· C (3, 1; 3, 3)· D (3, 3; 3, 5)· Câu 16 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A I(−1; −2; 3) B H(−2; −1; 3) C J(−3; 2; 7) D K(3; 0; 15) Câu 17 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 B (1 + i)2018 = 21009 i C (1 + i)2018 = 21009 D (1 + i)2018 = −21009 i Câu 18 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = + i C P = 2i D P = Câu 19 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = C A = 2k D A = 2ki Câu 20 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? B |z2 | = |z|2 C z · z = a2 − b2 D z + z = 2bi A z − z = 2a (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 21 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A z = B z số ảo C |z| = D z = z z Câu 22 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −9 C −10 D 10 Câu 23 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B 11 + 2i C −3 − 2i D −3 − 10i − 2i (1 − i)(2 + i) Câu 24 Phần thực số phức z = + 2−i + 3i 29 11 29 11 A − B − C D 13 13 13 13 Câu 25 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B M(2; −3) C N(2; 3) D P(−2; 3) Câu 26 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z + = C −2x + y − z − = D 2x + y − z − = Câu 27 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B C −2 D Câu 28 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = −2023cos(2023x) C f (x) = 2023cos(2023x) cos(2023x) B f (x) = − 2023 D f (x) = cos(2023x) Trang 2/5 Mã đề 001 Câu 29 Giá trị A e − R0 −1 e x+1 dx B − e C −e D e Câu 30 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = B I = 10 C I = D I = Câu 31 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x + y − z − = B x − y + z + = C 6x + y − z − = D x + y − z + = Câu 32 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = sinx − cosx + C B F(x) = sinx + cosx + C C F(x) = −sinx + cosx + C D F(x) = −sinx − cosx + C Câu 33 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) + C = f (x) B F(x) = f ′ (x) + C C F ′ (x) = f (x) D F(x) = f ′ (x) Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q B điểm R bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm P D điểm S Câu 35 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = −1 B A = C A = + i D A = √ √ √ 42 √ + 3i+ 15 Mệnh đề đúng? Câu 36 Cho số phức z thỏa mãn − 5i |z| = z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ B C A √ D 2 √ Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 39 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B 21008 C 22016 D −22016 Câu 40 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D Câu 41 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 85 97 A T = B T = C T = 13 D T = 13 3 Trang 3/5 Mã đề 001 Câu 42 Cho số phức z , cho z số thực w = thức |z| bằng? + |z|2 A √ B C Câu 43 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A z số thực Tính giá trị biểu + z2 B 3π ln + C D cos x π F(− ) = π Khi giá trị sin x + cos x 6π ln + 5 D ln + 6π Câu 44 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 √ Câu 45 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình với x ∈ (4; +∞) C Bất phương trình vơ nghiệm D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Câu 46 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a B C D A 3 2 Câu 47 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng C 36080254 đồng B 36080255 đồng D 36080251 đồng Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 49 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 50 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 31π 32π A B C D 6π 5 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001