Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được A[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường elip B Đường hypebol C Đường parabol D Đường tròn Câu R2 Kết đúng? R A sin2 x cos x = cos2 x sin x + C B sin2 x cos x = −cos2 x sin x + C R R sin3 x sin3 x + C D sin2 x cos x = + C C sin2 x cos x = − 3 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = [ 0; +∞) C S = [ -ln3; +∞) D S = (−∞; 2) Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π D 3π B 3π C A √ 3 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (−2; 0; 0) C (0; 2; 0) D (0; 6; 0) −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → → − → − −u | = −u | = √3 A | u | = B | u | = C |→ D |→ Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + 2ty = + tz = C x = + ty = + 2tz = D x = + 2ty = + tz = − 4t Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = A −6 B C D 13 Câu Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2021 B 2020 C 2022 D 2019 Câu 10 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Câu 11 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A −2 B C D −1 Câu 12 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−3; 0) B (0; −3) C (−1; −4) D (1; −4) Trang 1/5 Mã đề 001 Câu 13 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = − ty = tz = + t B x = + 2ty = 2tz = + t C x = + ty = tz = − t D x = + ty = tz = + t Câu 14 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD)√theo a √ a a A B a D 2a C 2 Câu 15 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A x5 + sin x + C B 5x5 + sin x + C C x5 − sin x + C D 5x5 − sin x + C Câu 16 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −7 B C D −1 Câu 17 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B C −3 D Câu 18 Cho hai √ số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 A |z1 + z2 | = 13 B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = Câu 19 Những số sau vừa số thực vừa số ảo? A Chỉ có số B Khơng có số C D C.Truehỉ có số − 2i (1 − i)(2 + i) + Câu 20 Phần thực số phức z = 2−i + 3i 11 11 29 29 A B − C − D 13 13 13 13 (1 + i)(2 + i) (1 − i)(2 − i) Câu 21 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? D z = A |z| = B z số ảo C z = z z Câu 22 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = − 3i C w = + 7i D w = −7 − 7i !2016 !2018 1−i 1+i + Câu 23 Số phức z = 1−i 1+i A B C −2 D + i Câu 24 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 25 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A 10 B C −10 D −9 Câu 26 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 1 2 A F(x) = (e x + 5) B F(x) = − (2 − e x ) C F(x) = − e x + C D F(x) = e x + 2 2 R2 Câu 27 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A B −2024 C 2025 D 2024 Trang 2/5 Mã đề 001 Câu 28 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e2x B F(x) = e x+1 C F(x) = e x + R0 Câu 29 Giá trị −1 e x+1 dx A − e B e C e − D F(x) = e x D −e Câu 30 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = B I = 10 C I = D I = Câu 31 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x + 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = C (x − 2)2 + y2 + z2 = D (x + 2)2 + y2 + z2 = Câu 32 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x + 2y + z − = B 3x − 2y + z − 12 = C 3x − 2y + z + = D 3x − 2y + z − = Câu 33 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x − = B z − = C y − = D x + y + z − = √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 34 Cho a, b, c số thực z = − + 2 A a2 + b2 + c2 − ab − bc − ca B C a + b + c D a2 + b2 + c2 + ab + bc + ca √ √ √ 42 √ Câu 35 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 z số thực Tính giá trị biểu Câu 36 Cho số phức z , cho z số thực w = + z2 |z| thức bằng? 1√+ |z|2 1 A B C D Câu 37 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Câu 38 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 1 A ; +∞ B 0; C ; D ; 4 4 z Câu 39 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B 2 C D Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √ thức P = |z1 | + |z √2 | √ √ A P = 34 + B P = 26 C P = D P = + Trang 3/5 Mã đề 001 Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B √ C D 2 Câu 42 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| √ A max T = B P = −2016 C P = D P = 2016 Câu 43 Chọn mệnh đề mệnh đề sau: R R e2x (2x + 1)3 A e2x dx = +C B (2x + 1)2 dx = + C R R C sin xdx = cos x + C D x dx =5 x + C Câu 44 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 17 πa2 17 πa2 15 B C D A 4 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ √ 2x − x2 + có số đường tiệm cận đứng là: Câu 46 Đồ thị hàm số y = x2 − A B C Câu 47 Biết a, b ∈ Z cho A R B (x + 1)e2x dx = ( D ax + b 2x )e + C Khi giá trị a + b là: C D Câu 48 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −2 D −4 Câu 49 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n 2mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 30 a 15 3a 3a A B C D 10 2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001