Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình hộp ABCD A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuôn[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 60a3 C 30a3 D 20a3 Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 a2 3b2 − a2 B VS ABC = A VS ABC = 12 12 √ √ 3ab2 3a2 b C VS ABC = D VS ABC = 12 12 Câu 3.√ Cho √hai số thực a, bthỏa mãn a > b > Kết luận√nào sau√ sai? √5 √ A a > b B ea > eb C a− < b− D a < b Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; 2) C (2; −1; −2) D (−2; 1; 2) Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? B ln x > ln y C loga x > loga y A log x > log y a D log x > log y a , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π B 3π C 3π D √ A 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu R7 Công thức sai? A R e x = e x + C C sin x = − cos x + C R B R a x = a x ln a + C D cos x = sin x + C Câu 8.√ Bất đẳng thức √ esau đúng? π A ( + 1) > ( + 1) C 3−e > 2−e √ √ e π B ( − 1) < ( − 1) D 3π < 2π Câu Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 2; 3) −n = (1; −2; 3) −n = (1; −2; −1) −n = (1; 3; −2) A → B → C → D → R2 R2 Câu 10 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) 0 A −9 B C −1 D x−2 y−6 z+2 Câu 11 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ A √ B √ C 10 D √ 10 53 Trang 1/5 Mã đề 001 Câu 12 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 12 B 21 C 18 D 27 Câu 13 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 14 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 56 B 76 C 64 D 48 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 15 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường √ √ trịn (C) A r = B r = C r = D r = Câu 16 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−2 ; 0) B (−∞ ; −2) C (−1 ; 4) D (0 ; +∞) Câu 17 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực −3 phần ảo là−2 B Phần thực là3 phần ảo C Phần thực phần ảo 2i D Phần thực là−3 phần ảo −2i Câu 18 Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi√đó mơ-đun số phức w = 6z − 25i C D 13 A B 29 2017 + 2i + i Câu 19 Số phức z = có tổng phần thực phần ảo 2−i A B C -1 D − 2i (1 − i)(2 + i) Câu 20 Phần thực số phức z = + 2−i + 3i 29 29 11 11 A B − C D − 13 13 13 13 Câu 21 Tìm số phức liên hợp số phức z = i(3i + 1) A z = − i B z = −3 − i C z = −3 + i D z = + i 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 22 Cho số phức z thỏa mãn (2 + i)z + 1+i A B 13 C D !2016 !2018 1+i 1−i Câu 23 Số phức z = + 1−i 1+i A B −2 C D + i Câu 24 Cho số phức z = + 5i Tìm số phức w = iz + z A w = + 7i B w = −7 − 7i C w = −3 − 3i D w = − 3i Câu 25 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = + i C P = D P = 2i R Câu 26 Tìm nguyên hàm I = xcosxdx A I = xsinx + cosx + C B I = xsinx − cosx + C x x C I = x2 sin + C D I = x2 cos + C 2 Câu 27 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z − 12 = B 3x − 2y + z + = C 3x − 2y + z − = D 3x + 2y + z − = Trang 2/5 Mã đề 001 Câu R28 Mệnh đề nàoRsau sai? R A R ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R R B R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R C R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R D f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R R4 R4 R3 Câu 29 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D Câu 30 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z + = C −2x + y − z − = D 2x + y − z − = Câu 31 Hàm số f (x) thoả mãn f ′ (x) = x x là: x+1 + C C x2 x + C D (x − 1) x + C x+1 Câu 32 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = sinx − cosx + C B F(x) = −sinx − cosx + C C F(x) = sinx + cosx + C D F(x) = −sinx + cosx + C A (x + 1) x + C B x2 + Câu 33 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (3; −1; −4) B (−3; −1; 4) C (3; 1; 4) D (−3; −1; −4) = Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ D B √ C A 2 z Câu 35 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B C D 2 Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 D P = (|z| − 4)2 A P = |z|2 − B P = (|z| − 2)2 C P = |z|2 − Câu 37 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | Câu 38 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B Phần thực z số âm C z số ảo D |z| = Câu 39 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 40 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = 2016 C P = −2016 D P = Câu 41 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Trang 3/5 Mã đề 001 Câu 42 Cho số phức z , cho z số thực w = thức |z| bằng? + |z|2 √ B A z số thực Tính giá trị biểu + z2 C 2 D Câu 43 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 6a3 C 4a3 D 12a3 Câu 44 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 √ Câu 45 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình vơ nghiệm Câu 46 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C Câu 47 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A ln + 6π B 6π C D cos x π F(− ) = π Khi giá trị sin x + cos x 3π ln + D 6π ln + 5 Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 49 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 23 29 27 A B C D 4 4 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = −1 + 2t x = + 2t x = − 2t x = + 2t y = −2 − 3t y = + 3t y = −2 + 3t y = −2 + 3t A B C D z = −4 − 5t z = − 5t z = + 5t z = − 5t Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001