Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2;−3;−1), N(2;−1[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 6; 0) B (−2; 0; 0) C (0; 2; 0) D (0; −2; 0) √ ′ ′ ′ ′ Câu Cho lăng trụ ABC.A √ B3 C có đáy a, AA√ = 34 3a Thể tích khối3lăng trụ cho là: A 3a B 3a C 3a D a Câu Cho hình chóp S ABCcó cạnh đáy a cạnh bên tích khối chóp là: q b Thể √ √ a2 b2 − 3a2 3a b B VS ABC = A VS ABC = √ 12 √12 a2 3b2 − a2 3ab C VS ABC = D VS ABC = 12 12 Câu Số nghiệm phương trình x + 5.3 x − = A B C D + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? B −4 < m < C ∀m ∈ R D < m , A m < Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (2; −3; −1) C M ′ (−2; −3; −1) D M ′ (−2; 3; 1) Câu Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 90◦ B 60◦ C 45◦ D 30◦ Câu Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 2a3 B 62 a3 C 22 a3 D 42 a3 Câu Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (3; 4) B (4; 5) C (2; 3) D (6; 7) Câu 10 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln a B ln 32 C ln 6a2 D ln 32 Câu 11 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 90◦ C 45◦ D 30◦ R4 R4 R4 Câu 12 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A −1 B C D 2 R R Câu 13 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A B −1 C −9 D Trang 1/5 Mã đề 001 Câu 14 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −4 B −8 C −6 D −2 − → Câu 15 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − A 45◦ B 90◦ C 30◦ D 60◦ Câu 16 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 B P = C P = D P = A P = 220 55 14 − Câu 17 Đạo hàm hàm số y = (2x + 1) tập xác định 1 − − A (2x + 1) ln(2x + 1) B 2(2x + 1) ln(2x + 1) 4 − − D − (2x + 1) C − (2x + 1) 3 Câu 18 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (0 ; +∞) B (−∞ ; −2) C (−1 ; 4) D (−2 ; 0) Câu 19 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 15 25 A S = B S = C S = 4 D S = 1+i z 25 Câu 20 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 Câu 21 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x − y + = D x + y − = Câu 22 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 4π B 2π C π D 3π Câu 23 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B C √ D √ 13 Câu 24 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Hai đường thẳng B Parabol C Đường tròn D Một đường thẳng Câu 25 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = C r = 20 D r = 22 Trang 2/5 Mã đề 001 Câu 26 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu z w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác C Tam giác OAB tam giác nhọn B Tam giác OAB tam giác vuông D Tam giác OAB tam giác cân −2 − 3i Câu 27 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ C max |z| = D max |z| = A max |z| = B max |z| = z−z =2? Câu 28 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường thẳng B Một Parabol C Một Elip D Một đường tròn Câu 29 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 30 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Parabol B Hai đường thẳng C Đường tròn D Một đường thẳng Câu 31 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi độ dài MN √ √ A MN = B MN = C MN = D MN = Câu 32 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 5)2 + (y − 4)2 = 125 B (x + 1)2 + (y − 2)2 = 125 C (x − 1)2 + (y − 4)2 = 125 D x = Câu 33 Trong không gian Oxyz, cho vectơ ⃗a = (2 ; −2 ; −4), ⃗b = (1 ; −1 ; 1) Mệnh đề sai? √ B ⃗a + ⃗b = (3 ; −3 ; −3) A ⃗b = C ⃗a ⃗b phương D ⃗a⊥⃗b Câu 34 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 0; 1),B(2; 1; 0),C(3; 2; 1) Hãy tìm tọa độ −−→ −−→ −−→ điểm M cho: 2AM = BM + 5AC A (10; 9; 9) B (9; 10; 2) C (10; 9; 2) D (9; 2; 10) − − → − −a → −a → Câu 35 Gọi φ góc hai vectơ → b , với → b khác , cos φ − → −a → → − → − → − → −a b −a b → −a + b b −→ A B C D − → − → − − → → −a → → − → − − → a b a b b a b − −a = (1; 2; 0) → Câu 36 Gọi φ góc hai vectơ → b = (2; 0; −1), cos φ 2 A √ B C − D 5 Câu 37 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 5; 0),B(3; 7; −4),C(2; 0; −1) Tọa độ điểm E cho A trọng tâm tam giác EBC A (−2; 1; 5) B (−2; 8; − ) C (−2; 8; 5) D (0; 8; 5) Câu 38 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 5; 2),B(3; 7; −4) Tọa độ điểm M đối xứng với A qua B A (5; 9; −10) B (2; 6; −1) C (7; 9; −10) D (5; 9; −3) Trang 3/5 Mã đề 001 Câu 39 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (−1; 0) B (−1; +∞) C (−∞; 0) D (0; +∞) Câu 40 Khối đa diện khối đa diện sau có tính chất: “Mỗi mặt khối đa diện tam giác đỉnh đỉnh chung ba mặt ”? A Khối tứ diện B Khối lập phương C Khối mười hai mặt D Khối bát diện Câu 41 Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân A BC = 2a Tính thể tích V khối lăng trụ ABC.A′ B′C ′ A V = 6a3 B V = 12a3 C V = a3 D V = 3a3 Câu 42 Hàm số hàm số nghịch biến R? x−3 C y = −x3 − 2x + A y = x4 − 2x2 + B y = 5−x D y = −x2 + 3x + 2x − Trong khẳng định sau, khẳng định đúng? −x + A Hàm số đồng biến khoảng (2; +∞) B Hàm số đồng biến khoảng (−2; +∞) C Hàm số đồng biến tập xác định D Hàm số đồng biến khoảng (−2; 2) Câu 43 Cho hàm số y = Câu 44 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A (1; 2) B x = C x = D (0; 3) Câu 45 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ D m ∈ (−1; 2) A m ∈ (0; 2) B m ≥ C −1 < m < Câu 46 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = −1+ B y = +1− ln ln 5 ln ln x x C y = + D y = − ln 5 ln ln Câu 47 Giá trị nhỏ hàm số y = A y = R x2 x tập xác định +1 B y = C y = −1 R R D y = − R Câu 48 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 30a3 B 60a3 C 100a3 D 20a3 Câu 49 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x3 C y = −x4 + 3x2 − D y = x2 − 2x + dx theo m? + 3x + m+2 m+1 B I = ln( ) C I = ln( ) m+1 m+2 Câu 50 Cho số thực dươngm Tính I = A I = ln( 2m + ) m+2 Rm x2 D I = ln( m+2 ) 2m + Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001