Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Số nghiệm của phương trình 9x + 5 3x − 6 = 0 là A 4 B 1 C[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Số nghiệm phương trình + 5.3 − = A B C x x D Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (2; −1; 2) C (−2; 1; 2) D (−2; −1; 2) Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = x3 − 2x2 + 3x + C y = −x4 + 3x2 − D y = x2 − 2x + Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > B m ≥ e−2 C m > e2 D m > 2e Câu Hàm √ số sau√đây đồng biến R? B y = x4 + 3x2 + A y = x2 + x + − x2 − x + C y = x D y = tan x x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = − C y = D y = −1 R R R R 2 Câu Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln 23 B ln a C ln 32 D ln 6a2 Câu Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n1 = (−1; 1; 1) B → n3 = (1; 1; 1) C → n2 = (1; −1; 1) D → n4 = (1; 1; −1) Câu Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A B 12 C D 11 Câu 10 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (1; 2; 3) C (2; 4; 6) D (−1; −2; −3) Câu 11 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 12 Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (12; +∞) C (−∞; 3) D (2; 3) Câu 13 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 40 B 60 C 50 D 30 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A J(−3; 2; 7) B K(3; 0; 15) C I(−1; −2; 3) D H(−2; −1; 3) Trang 1/5 Mã đề 001 Câu 15 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón B S = πa2 C S = πa2 D S = πa2 A S = πa2 4 Câu 16 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 12 B 21 C 18 D 27 ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị Câu 17 Cho hàm số y = cx + d hàm số cho trục hoành A (0 ; −2) B (3; ) C (2 ; 0) D (0 ; 3) Câu 18 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 48 B 64 C 76 D 56 Câu 19 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 2π B π C 4π D 3π √ Câu 20 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 C < |z| < D |z| < A |z| > B ≤ |z| ≤ 2 2 √ Câu 21 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = B |z| = 33 C |z| = 10 D |z| = 50 Câu 22 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 15 25 A S = B S = C S = 2 D S = 1+i z 15 Câu 23 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 5π C D 25π z Câu 24 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác nhọn B Tam giác OAB tam giác cân C Tam giác OAB tam giác D Tam giác OAB tam giác vuông Câu 25 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường tròn Tính bán kính r đường trịn A r = 22 B r = C r = 20 D r = √ Câu 26 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 27 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 5π C 25π D Trang 2/5 Mã đề 001 √ Câu 28 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 B |z| < C ≤ |z| ≤ D |z| > A < |z| < 2 2 Câu 29 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B −1 C D Câu 30 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x + y − = C x − y + = D x − y + = Câu 31 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B π C 2π D 4π √ Câu 32 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 10 B |z| = C |z| = 50 D |z| = 33 − −a = (1; 2; 0) → Câu 33 Gọi φ góc hai vectơ → b = (2; 0; −1), cos φ 2 A C − B √ D 5 Câu 34 √ Trong không gian cho √ √ hai điểm A(−1; 2; 3), B(0; √ 1; 1), độ dài đoạn ABbằng A 12 B 10 C D → − → − Câu 35 √ Cho vectơ a = (1; −1; 2), độ dài vectơ a √ A B C − D − − → − −a → −a → Câu 36 Gọi φ góc hai vectơ → b , với → b khác , cos φ − → −a → → − → − − b → − → − → −a + → −a.b a.b b A B C D → − → − → − → − → → → → − − − − a b a b a b a b Câu 37 Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ ⃗a = (2; 1; 1),⃗b = (m; 2n − 4; 2) phương Khi giá trị m, n A m = −4, n = −3 B m = 4, n = −3 C m = −4, n = D m = 4, n = − → − → − → −−→ Câu 38 Trong không gian Oxyz, gọi i , j , k vectơ đơn vị, với M(x; y; z) OM → − → − − → − → − − → − → − − → − → − − A x i − y j − → z k B x j + y i + → z k C x i + y j + → z k D −x i − y j − → z k Câu 39 Tìm giá trị nhỏ hàm số f (x) = 2x3 − 3x2 − 12x + 10 đoạn [−3; 3] A −10 B C −35 D 17 Câu 40 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Điểm cực tiểu hàm số (0; 1) B Đồ thị hàm số tiệm cận C Đồ thị hàm số có điểm cực đại D Đồ thị hàm số cắt trục tung điểm (0; 1) Câu 41 Đồ thị hàm số y = −x3 + 3x2 − 3x + có điểm cực trị? A B C D Câu 42 Cho hàm số y = x3 − 3x2 − 9x − Trong khẳng định sau, khẳng định sai? A Hàm số có điểm cực đại điểm cực tiểu B Giá trị cực tiểu hàm số C Hàm số có hai điểm cực trị D Giá trị cực đại hàm số Trang 3/5 Mã đề 001 2x − Trong khẳng định sau, khẳng định đúng? −x + A Hàm số đồng biến tập xác định B Hàm số đồng biến khoảng (−2; 2) Câu 43 Cho hàm số y = C Hàm số đồng biến khoảng (2; +∞) D Hàm số đồng biến khoảng (−2; +∞) Câu 44 Cho hàm số y = f (x) liên tục R lim y = Trong khẳng định sau, khẳng định x→+∞ đúng? A Đường thẳng y = tiệm cận ngang đồ thị hàm số y = f (x) B Đường thẳng y = tiệm cận đứng đồ thị hàm số y = f (x) C Đường thẳng x = tiệm cận ngang đồ thị hàm số y = f (x) D Đường thẳng x = tiệm cận đứng đồ thị hàm số y = f (x) Câu 45 Cho hai số thực a, bthỏa mãn a > b > Kết luận sau sai? √ √ √ √ √5 √ A a > b B ea > eb C a < b D a− < b− Câu 46 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + 2ty = + tz = − 4t B x = + ty = + 2tz = C x = + 2ty = + tz = D x = + 2ty = + tz = p Câu 47 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếux > thìy < −15 C Nếux = y = −3 D Nếu < x < π y > − 4π2 A Hàm số đồng biến R đúng? x B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến (0; +∞) D Hàm số nghịch biến R Câu 48 Kết luận sau tính đơn điệu hàm số y = Câu 49 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 3a 2a 5a A √ B C √ D 5 Câu 50 Hàm số sau đồng biến R? A y = x4 + 3x2 + √ √ C y = x2 + x + − x2 − x + B y = tan x D y = x2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001