Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là A πR3[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A bc > B ab < C ac < D ad > Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? + 2x x+1 D m < → − Câu Trong không gian với hệ tọa√độ Oxyz cho u (2; −2; 1), kết luận sau đúng? −u | = −u | = −u | = −u | = C |→ D |→ A |→ B |→ Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m ≥ C m < D m > p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếux > thìy < −15 C Nếu < x < π y > − 4π D Nếu < x < y < −3 A < m , B −4 < m < C ∀m ∈ R Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (2; 3; 1) C M ′ (−2; −3; −1) D M ′ (−2; 3; 1) Câu Kết đúng? R sin3 x A sin x cos x = + C R C sin x cos x = cos2 x sin x + C sin3 x B sin x cos x = − + C R D sin x cos x = −cos2 x sin x + C R Câu Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho 2a3 a3 C 6a3 D A 2a3 B 3 Câu 10 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −2 B −8 C −6 D −4 − → Câu 11 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ A 45◦ B 60◦ D 90◦ C 30 Câu 12 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 60 B 50 C 40 D 30 Trang 1/4 Mã đề 001 Câu 13 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 17 B 18 C 13 D 20 − Câu 14 Đạo hàm hàm số y = (2x + 1) tập xác định − − A − (2x + 1) B (2x + 1) ln(2x + 1) − − C 2(2x + 1) ln(2x + 1) D − (2x + 1) Câu 15 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 22π 7π 512π A V = B V = C V = D V = 15 ax + b Câu 16 Cho hàm số y = có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (0 ; −2) B (2 ; 0) C (0 ; 3) D (3; ) Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 18 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 B (1 + i)2018 = 21009 C (1 + i)2018 = 21009 i D (1 + i)2018 = −21009 i Câu 19 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −9 B −10 C 10 D Câu 20 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực không âm B Mô-đun số phức z số phức D Mô-đun số phức z số thực Câu 21 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = + i B P = C P = 2i D P = 1 25 = + Khi phần ảo z bao nhiêu? Câu 22 Cho số phức z thỏa z + i (2 − i)2 A −17 B 17 C −31 D 31 Câu 23 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B −3 + 2i C 11 + 2i D −3 − 10i Câu 24 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A |z2 | = |z|2 B z · z = a2 − b2 C z + z = 2bi D z − z = 2a (1 + i)(2 + i) (1 − i)(2 − i) Câu 25 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z = B |z| = C z số ảo D z = z z Câu 26 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường tròn Tâm đường trịn có tọa độ A (0; 2) B (0; −2) C (−2; 0) D (2; 0) Trang 2/4 Mã đề 001 Câu 27 Tập nghiệm bất phương trình x+1 < A (1; +∞) B (−∞; 1] C [1; +∞) D (−∞; 1) Câu 28 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 3 B A 2a a C a D a 3 Câu 29 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 a B a C a D 2a3 A Câu 30 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; 2; −3) B (−1; −2; −3) C (1; −2; 3) D (−1; 2; 3) R4 R4 R4 Câu 31 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C D −1 Câu 32 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 A B C D 35 35 35 Câu 33 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 34 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = √ Câu 35 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm M √ Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = √ √ √ 42 √ Câu 37 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 z Câu 38 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B C 2 D Trang 3/4 Mã đề 001 Câu 39 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| < B |A| ≥ 2z − i Mệnh đề sau đúng? + iz C |A| > D |A| ≤ Câu 40 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 41 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A P = 2016 B max T = C P = −2016 D P = √ 2 Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 43 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; 2; 3); R = B I(1; −2; 3); R = C I(−1; 2; −3); R = D I(1; 2; −3); R = Câu 44 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (−∞; −2) B (2; +∞) C (0; 2) D (−2; 0) Câu 45 Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 − 5x + m) > log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = (7; +∞) B S = (−∞; 5] C S = [6; +∞) D S = (−∞; 4) x+1 Câu 46 Đồ thị hàm số y = (C) có đường tiệm cận x−2 A y = x = −1 B y = x = C y = x = D y = −1 x = R Câu 47 6x5 dxbằng A x6 + C B 6x6 + C C x6 + C D 30x4 + C Câu 48 Số phức z = − 3i có phần ảo A B −3 C 3i D Câu 49 Thể tích khối lập phương có cạnh 3a là: A 27a3 B 8a3 C 3a3 D 2a3 √ 2, OD = Câu 50 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ A d = a B d = a C d = 2a D d = a - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001