Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) 2x− y+ 2z+ 5 = 0 T[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (−2; 1; 2) C (2; −1; 2) D (−2; −1; 2) Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường hypebol C Đường parabol D Đường elip Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π B 3π D 3π C A √ 3 π π π x F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = − C F( ) = + D F( ) = − 4 4 4 Câu Đồ thị hàm số sau có vô số đường tiệm cận đứng? 3x + A y = x3 − 2x2 + 3x + B y = x−1 C y = tan x D y = sin x Câu Số nghiệm phương trình x + 5.3 x − = A B C D √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành? 10π π C V = D V = A V = π B V = 3 Câu Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 2; 3) −n = (1; −2; 3) −n = (1; 3; −2) −n = (1; −2; −1) A → B → C → D → Câu 10 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B 3a C D Câu 11 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 18 B 13 C 20 D 17 Câu 12 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Câu 13 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B −3 C −2 D Trang 1/4 Mã đề 001 Câu 14 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (0; −3) B (1; −4) C (−3; 0) D (−1; −4) Câu 15 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD)√theo a √ a a B a C D 2a A 2 Câu 16 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −6 B −4 C −8 D −2 Câu 17 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 18 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A 10 B C −10 D −9 4(−3 + i) (3 − i) + Mô-đun số phức w = z − iz + Câu 19 Cho số phức z thỏa mãn z = −i √ √ − 2i √ √ A |w| = 85 B |w| = C |w| = D |w| = 48 Câu 20 Với số phức z, ta có |z + 1|2 A z · z + z + z + B z2 + 2z + C z + z + D |z|2 + 2|z| + Câu 21 biểu thức |z1 + z1 z2 | √ √ Cho số phức z1 = +√2i, z2 = − i Giá trị √ B 130 C 30 D 10 A 10 Câu 22 Cho hai số phức z1 = + i z2 = − 3i Tính mơ-đun √ √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 23 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B |z2 | = |z|2 C z + z = 2bi D z − z = 2a 2(1 + 2i) Câu 24 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B 13 C D Câu 25 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2ki B A = C A = 2k D A = Câu 26 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D x−2 y−1 z−1 Câu 27 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Câu 28 Cho hàm số y = ax + bx + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 0) C (−1; 2) D (1; 2) Trang 2/4 Mã đề 001 Câu 29 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D Câu 30 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (6; 7) C (7; 6) D (−6; 7) Câu 31 Tập nghiệm bất phương trình log(x − 2) > A (2; 3) B (−∞; 3) C (12; +∞) D (3; +∞) Câu 32 Cho số phức z = + 9i, phần thực số phức z2 A 85 B C 36 D −77 Câu 33 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B C D A 35 35 35 z+1 Câu 34 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 C |z| = D |z| = A |z| = B |z| = Câu 35 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = −2016 B P = 2016 C P = D P = √ 2 Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 37 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B 10 C D A 15 z Câu 38 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 B C D A Câu 39 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B z số thực không dương C Phần thực z số âm D z số ảo 2z − i Mệnh đề sau đúng? Câu 40 Cho số phức z thỏa mãn |z| ≤ ĐặtA = + iz A |A| < B |A| ≤ C |A| ≥ D |A| > Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = |z|2 − C P = (|z| − 4)2 D P = (|z| − 2)2 Câu 42 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B 22016 C −22016 D 21008 Trang 3/4 Mã đề 001 −a = (4; −6; 2) Phương Câu 43 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = + 2ty = −3tz = −1 + t B x = + 2ty = −3tz = + t C x = −2 + 2ty = −3tz = + t D x = −2 + 4ty = −6tz = + 2t Câu 44 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π , Tính diện tích tam giác ABC lượt hình trịn xoay tích 672π, 13 A S = 84 B S = 1979 C S = 364 D S = 96 π R4 Câu 45 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 − π2 + 16π − 16 π2 + 15π A B C 16 16 16 Câu 46 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A [−3; 3] B (0; 3] C (−∞; 3] π2 + 16π − D 16 D (−∞; −3] ∪ [3; +∞) Câu 47 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x A cos 3xdx = − + C B cos 3xdx = sin 3x + C R R sin 3x + C C cos 3xdx = sin 3x + C D cos 3xdx = Câu 48 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A Vô số B C D Câu 49 Số phức z = − 3i có phần ảo A B C −3 D 3i √ 2, OD = Câu 50 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ A d = a B d = a C d = 2a D d = a - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001