Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đ[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = 13 C m = D m = −15 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? A R = 29 B R = C R = D R = 21 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 450 B 360 C 600 D 300 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 ′ ′ ′ ′ Câu Cho hình hộp ABCD.A B C D có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 30a3 C 20a3 D 60a3 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = sin x 3x + C y = tan x D y = x−1 ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu Cho hàm số y = cx + d A ad > B bc > C ab < D ac < Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 0; 5) C (0; 5; 0) D (0; 1; 0) Câu Tính đạo hàm hàm số y = x A y′ = x B y′ = x ln C y′ = 5x ln D y′ = x.5 x−1 − → Câu 10 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 60 B 45 C 30◦ D 90◦ Câu 11 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−2 ; 0) B (−1 ; 4) C (0 ; +∞) D (−∞ ; −2) Câu 12 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A −192 B 192 C 384 D −384 Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) qua tâm mặt cầu (S ) B (P) tiếp xúc mặt cầu (S ) C (P) không cắt mặt cầu (S ) D (P) cắt mặt cầu (S ) Trang 1/4 Mã đề 001 √ Câu 14 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 3; 3, 5)· B (3, 1; 3, 3)· C (3, 5; 3, 7)· D (3, 7; 3, 9)· Câu 15 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 18 B 21 C 12 D 27 Câu 16 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (1; 4) B Hàm số cho nghịch biến khoảng (1; 4) C Hàm số cho nghịch biến khoảng (3; +∞) D Hàm số cho đồng biến khoảng (−∞; 3) (1 + i)(2 − i) Câu 17 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = Câu 18 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 19 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = Câu 20 2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ Cho số phức z1 = + √ √ A 130 B 30 C 10 D 10 1 25 = + Khi phần ảo z bao nhiêu? Câu 21 Cho số phức z thỏa z + i (2 − i)2 A −31 B 17 C 31 D −17 z2 Câu 22 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ D 11 A 13 B C − 2i (1 − i)(2 + i) Câu 23 Phần thực số phức z = + 2−i + 3i 11 11 29 29 B C − D A − 13 13 13 13 4k−2 4k ∗ Câu 24 Cho A = + i + i + · · · + i + i , k ∈ N Hỏi đâu phương án đúng? A A = B A = C A = 2ki D A = 2k Câu 25 Với số phức z, ta có |z + 1|2 A z + z + B z2 + 2z + C |z|2 + 2|z| + D z · z + z + z + Câu 26 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết a, thể tích khối lăng trụ cho khoảng cách từ A đến mặt phẳng (A′ BC) √ √ √ √ 3 3 A a B a C 2a D a Câu 27 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B C 12 D Trang 2/4 Mã đề 001 Câu 28 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln(6a2 ) B ln C ln Câu 29 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 B y′ = C y′ = − A y′ = xln3 x xln3 Câu 30 Tập nghiệm bất phương trình log(x − 2) > A (2; 3) B (−∞; 3) C (3; +∞) D lna D y′ = ln3 x D (12; +∞) Câu 31 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ 3 A C a B 2a a D a 3 Câu 32 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D 2 ′ Câu 33 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D 2 Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z √2 | √ √ B P = 26 C P = 34 + D P = A P = + Câu 35 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 36 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = −1 B A = C A = D A = + i Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 4)2 C P = |z|2 − D P = (|z| − 2)2 Câu 38 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B z số ảo C Phần thực z số âm D z số thực không dương √ Câu 39 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a2 + b2 + c2 − ab − bc − ca C a + b + c D a2 + b2 + c2 + ab + bc + ca = Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B √ C D 2 Câu 41 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm R D điểm Q Trang 3/4 Mã đề 001 Câu 42 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 43 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −5 B S = C S = −6 D S = Câu 44 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A B C Vô số D Câu 45 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A −x + 2y + 2z + = B x + 2y + 2z + = C 3x − 4y + 6z + 34 = D x − 2y − 2z − = Câu 46 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 D V = 3a3 A V = 2a3 B V = a3 C V = − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 47 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? − √ → − − A → B b ⊥→ a c = √ −a = C → → − − D b ⊥→ c Câu 48 Đường cong hình bên đồ thị hàm số đây? A y = x3 − 3x2 + B y = −x3 + 3x2 + C y = −x4 + 2x2 + D y = x4 − 2x2 + Câu 49 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 A M(− ; ; −1) B M(− ; ; −1) C M(− ; ; 2) D M( ; ; −1) 4 4 √ Câu 50 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x + 4)2 + (y − 8)2 = 20 B (x + 4)2 + (y − 8)2 = √5 C (x − 4)2 + (y + 8)2 = 20 D (x − 4)2 + (y + 8)2 = - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001